These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34647552)

  • 1. Discrimination of adhesion and viscoelasticity from nanoscale maps of polymer surfaces using bimodal atomic force microscopy.
    Rajabifar B; Bajaj A; Reifenberger R; Proksch R; Raman A
    Nanoscale; 2021 Oct; 13(41):17428-17441. PubMed ID: 34647552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing viscoelastic surfaces with bimodal tapping-mode atomic force microscopy: Underlying physics and observables for a standard linear solid model.
    Solares SD
    Beilstein J Nanotechnol; 2014; 5():1649-63. PubMed ID: 25383277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast, quantitative and high resolution mapping of viscoelastic properties with bimodal AFM.
    Benaglia S; Amo CA; Garcia R
    Nanoscale; 2019 Aug; 11(32):15289-15297. PubMed ID: 31386741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes.
    Kiracofe D; Raman A; Yablon D
    Beilstein J Nanotechnol; 2013; 4():385-93. PubMed ID: 23844344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomechanical mapping in air or vacuum using multi-harmonic signals in tapping mode atomic force microscopy.
    Huda Shaik N; G Reifenberger R; Raman A
    Nanotechnology; 2020 Nov; 31(45):455502. PubMed ID: 32413884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying nanoscale forces using machine learning in dynamic atomic force microscopy.
    Chandrashekar A; Belardinelli P; Bessa MA; Staufer U; Alijani F
    Nanoscale Adv; 2022 May; 4(9):2134-2143. PubMed ID: 35601812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast and high-resolution mapping of elastic properties of biomolecules and polymers with bimodal AFM.
    Benaglia S; Gisbert VG; Perrino AP; Amo CA; Garcia R
    Nat Protoc; 2018 Dec; 13(12):2890-2907. PubMed ID: 30446750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy.
    Solares SD
    Beilstein J Nanotechnol; 2015; 6():2233-41. PubMed ID: 26734515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.
    Kocun M; Labuda A; Meinhold W; Revenko I; Proksch R
    ACS Nano; 2017 Oct; 11(10):10097-10105. PubMed ID: 28953363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of phase contrast in bimodal amplitude modulation AFM.
    Damircheli M; Payam AF; Garcia R
    Beilstein J Nanotechnol; 2015; 6():1072-81. PubMed ID: 26114079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing phase contrast for bimodal AFM imaging in low quality factor environments.
    Damircheli M; Eslami B
    Ultramicroscopy; 2019 Sep; 204():18-26. PubMed ID: 31112833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized Hertz model for bimodal nanomechanical mapping.
    Labuda A; Kocuń M; Meinhold W; Walters D; Proksch R
    Beilstein J Nanotechnol; 2016; 7():970-82. PubMed ID: 27547614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially resolved frequency-dependent elasticity measured with pulsed force microscopy and nanoindentation.
    Sweers KK; van der Werf KO; Bennink ML; Subramaniam V
    Nanoscale; 2012 Mar; 4(6):2072-7. PubMed ID: 22331128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different directional energy dissipation of heterogeneous polymers in bimodal atomic force microscopy.
    Tan X; Guo D; Luo J
    RSC Adv; 2019 Aug; 9(47):27464-27474. PubMed ID: 35529235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repulsive bimodal atomic force microscopy on polymers.
    Gigler AM; Dietz C; Baumann M; Martinez NF; García R; Stark RW
    Beilstein J Nanotechnol; 2012; 3():456-63. PubMed ID: 23016150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing Viscoelastic Properties and Interfaces in High-Density Polyethylene Vitrimers at the Nanoscale Using Dynamic Mode Atomic Force Microscopy.
    Yang L; Nickmilder P; Verhoogt H; Hoeks T; Leclère P
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 38993000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions.
    Solares SD
    Beilstein J Nanotechnol; 2016; 7():554-71. PubMed ID: 27335746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study of the frequency shift in bimodal FM-AFM by fractional calculus.
    Herruzo ET; Garcia R
    Beilstein J Nanotechnol; 2012; 3():198-206. PubMed ID: 22496992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments.
    Guzman HV; Garcia PD; Garcia R
    Beilstein J Nanotechnol; 2015; 6():369-79. PubMed ID: 25821676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative mapping of magnetic properties at the nanoscale with bimodal AFM.
    Gisbert VG; Amo CA; Jaafar M; Asenjo A; Garcia R
    Nanoscale; 2021 Jan; 13(3):2026-2033. PubMed ID: 33449980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.