These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Effect of blockage ratio on flow of a viscoelastic wormlike micellar solution past a cylinder in a microchannel. Hopkins CC; Shen AQ; Haward SJ Soft Matter; 2022 Nov; 18(46):8856-8866. PubMed ID: 36374283 [TBL] [Abstract][Full Text] [Related]
7. Flow of wormlike micellar solutions around microfluidic cylinders with high aspect ratio and low blockage ratio. Haward SJ; Kitajima N; Toda-Peters K; Takahashi T; Shen AQ Soft Matter; 2019 Feb; 15(9):1927-1941. PubMed ID: 30657156 [TBL] [Abstract][Full Text] [Related]
8. Purely Elastic Fluid-Structure Interactions in Microfluidics: Implications for Mucociliary Flows. Hopkins CC; Haward SJ; Shen AQ Small; 2020 Mar; 16(9):e1903872. PubMed ID: 31747485 [TBL] [Abstract][Full Text] [Related]
9. Effect of chain scission on flow characteristics of wormlike micellar solutions past a confined microfluidic cylinder: a numerical analysis. Khan MB; Sasmal C Soft Matter; 2020 Jun; 16(22):5261-5272. PubMed ID: 32458953 [TBL] [Abstract][Full Text] [Related]
10. Viscoelastic effects on residual oil distribution in flows through pillared microchannels. De S; Krishnan P; van der Schaaf J; Kuipers JAM; Peters EAJF; Padding JT J Colloid Interface Sci; 2018 Jan; 510():262-271. PubMed ID: 28950172 [TBL] [Abstract][Full Text] [Related]
11. "The hydrogen atom of fluid dynamics"--introduction to the Taylor-Couette flow for soft matter scientists. Fardin MA; Perge C; Taberlet N Soft Matter; 2014 May; 10(20):3523-35. PubMed ID: 24651955 [TBL] [Abstract][Full Text] [Related]
12. AC electric field controlled non-Newtonian filament thinning and droplet formation on the microscale. Huang Y; Wang YL; Wong TN Lab Chip; 2017 Aug; 17(17):2969-2981. PubMed ID: 28745766 [TBL] [Abstract][Full Text] [Related]
13. Dean Flow Dynamics in Low-Aspect Ratio Spiral Microchannels. Nivedita N; Ligrani P; Papautsky I Sci Rep; 2017 Mar; 7():44072. PubMed ID: 28281579 [TBL] [Abstract][Full Text] [Related]
14. Multiphase flow in microfluidics: From droplets and bubbles to the encapsulated structures. Sattari A; Hanafizadeh P; Hoorfar M Adv Colloid Interface Sci; 2020 Aug; 282():102208. PubMed ID: 32721624 [TBL] [Abstract][Full Text] [Related]
15. Upstream wall vortices in viscoelastic flow past a cylinder. Hopkins CC; Haward SJ; Shen AQ Soft Matter; 2022 Jul; 18(26):4868-4880. PubMed ID: 35730936 [TBL] [Abstract][Full Text] [Related]
17. Modeling of DNA transport in viscoelastic electro-hydrodynamic flows for enhanced size separation. Chami B; Socol M; Manghi M; Bancaud A Soft Matter; 2018 Jun; 14(24):5069-5079. PubMed ID: 29873390 [TBL] [Abstract][Full Text] [Related]
18. Breakage of non-Newtonian character in flow through a porous medium: evidence from numerical simulation. Bleyer J; Coussot P Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063018. PubMed ID: 25019890 [TBL] [Abstract][Full Text] [Related]
19. Modeling electroosmotic and pressure-driven flows in porous microfluidic devices: zeta potential and porosity changes near the channel walls. Scales N; Tait RN J Chem Phys; 2006 Sep; 125(9):094714. PubMed ID: 16965112 [TBL] [Abstract][Full Text] [Related]