These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34647743)

  • 1. Activation of Abl1 Kinase Explored Using Well-Tempered Metadynamics Simulations on an Essential Dynamics Sampled Path.
    Oruganti B; Friedman R
    J Chem Theory Comput; 2021 Nov; 17(11):7260-7270. PubMed ID: 34647743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient strategy to estimate thermodynamics and kinetics of G protein-coupled receptor activation using metadynamics and maximum caliber.
    Meral D; Provasi D; Filizola M
    J Chem Phys; 2018 Dec; 149(22):224101. PubMed ID: 30553249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Conformational Transition Pathways and Hidden Intermediates in DFG-Flip Process of c-Met Kinase Revealed by Metadynamics Simulations.
    Jiang T; Liu Z; Liu W; Chen J; Zheng Z; Duan M
    J Chem Inf Model; 2022 Aug; 62(15):3651-3663. PubMed ID: 35848778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Adaptive Path Collective Variable: A Versatile Biasing Approach to Compute the Average Transition Path and Free Energy of Molecular Transitions.
    Pérez de Alba Ortíz A; Vreede J; Ensing B
    Methods Mol Biol; 2019; 2022():255-290. PubMed ID: 31396907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transition between active and inactive conformations of Abl kinase studied by rock climbing and Milestoning.
    Narayan B; Fathizadeh A; Templeton C; He P; Arasteh S; Elber R; Buchete NV; Levy RM
    Biochim Biophys Acta Gen Subj; 2020 Apr; 1864(4):129508. PubMed ID: 31884066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced sampling and free energy calculations for protein simulations.
    Liao Q
    Prog Mol Biol Transl Sci; 2020; 170():177-213. PubMed ID: 32145945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating Protein Mediated Hydrolysis of ATP and Other Nucleoside Triphosphates by Combining QM/MM Molecular Dynamics with Advances in Metadynamics.
    Sun R; Sode O; Dama JF; Voth GA
    J Chem Theory Comput; 2017 May; 13(5):2332-2341. PubMed ID: 28345907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition-Tempered Metadynamics Is a Promising Tool for Studying the Permeation of Drug-like Molecules through Membranes.
    Sun R; Dama JF; Tan JS; Rose JP; Voth GA
    J Chem Theory Comput; 2016 Oct; 12(10):5157-5169. PubMed ID: 27598403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational flexibility of human casein kinase catalytic subunit explored by metadynamics.
    Gouron A; Milet A; Jamet H
    Biophys J; 2014 Mar; 106(5):1134-41. PubMed ID: 24606937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive Approach to Simulating Large Scale Conformational Changes in Biological Systems Utilizing a Path Collective Variable and New Barrier Restraint.
    Kolossváry I; Sherman W
    J Phys Chem B; 2023 Jun; 127(23):5214-5229. PubMed ID: 37279354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide Dynamics and Metadynamics: Leveraging Enhanced Sampling Molecular Dynamics to Robustly Model Long-Timescale Transitions.
    Clayton J; Baweja L; Wereszczynski J
    Methods Mol Biol; 2022; 2405():151-167. PubMed ID: 35298813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations.
    Dixit A; Verkhivker GM
    PLoS Comput Biol; 2009 Aug; 5(8):e1000487. PubMed ID: 19714203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational methods for exploring protein conformations.
    Allison JR
    Biochem Soc Trans; 2020 Aug; 48(4):1707-1724. PubMed ID: 32756904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Machine Learning Algorithms to Metadynamics for the Elucidation of the Binding Modes and Free Energy Landscape of Drug/Target Interactions: a Case Study.
    Siddiqui GA; Stebani JA; Wragg D; Koutsourelakis PS; Casini A; Gagliardi A
    Chemistry; 2023 Nov; 29(62):e202302375. PubMed ID: 37555841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking well-tempered metadynamics simulations with experiments.
    Barducci A; Bonomi M; Parrinello M
    Biophys J; 2010 May; 98(9):L44-6. PubMed ID: 20441734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Essential slow degrees of freedom in protein-surface simulations: A metadynamics investigation.
    Prakash A; Sprenger KG; Pfaendtner J
    Biochem Biophys Res Commun; 2018 Mar; 498(2):274-281. PubMed ID: 28720500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dimensionality of Collective Variables for Describing Conformational Changes of a Multi-Domain Protein.
    Matsunaga Y; Komuro Y; Kobayashi C; Jung J; Mori T; Sugita Y
    J Phys Chem Lett; 2016 Apr; 7(8):1446-51. PubMed ID: 27049936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the Conformational Variability of Abl Tyrosine Kinase using Molecular Dynamics Simulations and Markov State Models.
    Meng Y; Gao C; Clawson DK; Atwell S; Russell M; Vieth M; Roux B
    J Chem Theory Comput; 2018 May; 14(5):2721-2732. PubMed ID: 29474075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing the Sampling Efficiency of Protein Conformational Change by Combining a Modified Replica Exchange Molecular Dynamics and Normal Mode Analysis.
    Peng C; Wang J; Shi Y; Xu Z; Zhu W
    J Chem Theory Comput; 2021 Jan; 17(1):13-28. PubMed ID: 33351613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using metadynamics and path collective variables to study ligand binding and induced conformational transitions.
    Bešker N; Gervasio FL
    Methods Mol Biol; 2012; 819():501-13. PubMed ID: 22183554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.