These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 34648025)

  • 1. Quality control and evaluation of plant epigenomics data.
    Schmitz RJ; Marand AP; Zhang X; Mosher RA; Turck F; Chen X; Axtell MJ; Zhong X; Brady SM; Megraw M; Meyers BC
    Plant Cell; 2022 Jan; 34(1):503-513. PubMed ID: 34648025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring plant cis-regulatory elements at single-cell resolution: overcoming biological and computational challenges to advance plant research.
    Mendieta JP; Sangra A; Yan H; Minow MAA; Schmitz RJ
    Plant J; 2023 Sep; 115(6):1486-1499. PubMed ID: 37309871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding the plant genome: From epigenome to 3D organization.
    Ouyang W; Cao Z; Xiong D; Li G; Li X
    J Genet Genomics; 2020 Aug; 47(8):425-435. PubMed ID: 33023833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable unmethylated DNA demarcates expressed genes and their cis-regulatory space in plant genomes.
    Crisp PA; Marand AP; Noshay JM; Zhou P; Lu Z; Schmitz RJ; Springer NM
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23991-24000. PubMed ID: 32879011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and computational approaches to map regulatory elements in 3D chromatin structure.
    Lee BH; Rhie SK
    Epigenetics Chromatin; 2021 Mar; 14(1):14. PubMed ID: 33741028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel mRNAs 3' end-associated
    Wang HV; Chekanova JA
    RNA; 2019 Oct; 25(10):1242-1258. PubMed ID: 31311821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing cis-regulatory elements using single-cell epigenomics.
    Preissl S; Gaulton KJ; Ren B
    Nat Rev Genet; 2023 Jan; 24(1):21-43. PubMed ID: 35840754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity.
    Pancaldi V; Carrillo-de-Santa-Pau E; Javierre BM; Juan D; Fraser P; Spivakov M; Valencia A; Rico D
    Genome Biol; 2016 Jul; 17(1):152. PubMed ID: 27391817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The prevalence, evolution and chromatin signatures of plant regulatory elements.
    Lu Z; Marand AP; Ricci WA; Ethridge CL; Zhang X; Schmitz RJ
    Nat Plants; 2019 Dec; 5(12):1250-1259. PubMed ID: 31740772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Connecting high-resolution 3D chromatin organization with epigenomics.
    Feng F; Yao Y; Wang XQD; Zhang X; Liu J
    Nat Commun; 2022 Apr; 13(1):2054. PubMed ID: 35440119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization and epigenomic control of RNA polymerase III-transcribed genes in plants.
    Hummel G; Liu C
    Curr Opin Plant Biol; 2022 Jun; 67():102199. PubMed ID: 35364484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cis-regulatory sequences in plants: Their importance, discovery, and future challenges.
    Schmitz RJ; Grotewold E; Stam M
    Plant Cell; 2022 Feb; 34(2):718-741. PubMed ID: 34918159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intertwined evolution of plant epigenomes and genomes.
    Ritter EJ; Niederhuth CE
    Curr Opin Plant Biol; 2021 Jun; 61():101990. PubMed ID: 33445143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging trends in genomic and epigenomic regulation of plant specialised metabolism.
    Conneely LJ; Berkowitz O; Lewsey MG
    Phytochemistry; 2022 Nov; 203():113427. PubMed ID: 36087823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospects and challenges of epigenomics in crop improvement.
    Huang Y; Liu Y; Liu C; Birchler JA; Han F
    Genes Genomics; 2022 Mar; 44(3):251-257. PubMed ID: 34837632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Cell Genomics and Epigenomics: Technologies and Applications in Plants.
    Luo C; Fernie AR; Yan J
    Trends Plant Sci; 2020 Oct; 25(10):1030-1040. PubMed ID: 32532595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Putting DNA methylation in context: from genomes to gene expression in plants.
    Niederhuth CE; Schmitz RJ
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):149-156. PubMed ID: 27590871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide identification of regulatory DNA elements and protein-binding footprints using signatures of open chromatin in Arabidopsis.
    Zhang W; Zhang T; Wu Y; Jiang J
    Plant Cell; 2012 Jul; 24(7):2719-31. PubMed ID: 22773751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative analysis of reference epigenomes in 20 rice varieties.
    Zhao L; Xie L; Zhang Q; Ouyang W; Deng L; Guan P; Ma M; Li Y; Zhang Y; Xiao Q; Zhang J; Li H; Wang S; Man J; Cao Z; Zhang Q; Zhang Q; Li G; Li X
    Nat Commun; 2020 May; 11(1):2658. PubMed ID: 32461553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput approaches for plant epigenomic studies.
    Schmitz RJ; Zhang X
    Curr Opin Plant Biol; 2011 Apr; 14(2):130-6. PubMed ID: 21470901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.