These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 34648116)

  • 1. Understanding the Basis of Occurrence, Biosynthesis, and Implications of Thermostable Alkaline Proteases.
    Arya PS; Yagnik SM; Rajput KN; Panchal RR; Raval VH
    Appl Biochem Biotechnol; 2021 Dec; 193(12):4113-4150. PubMed ID: 34648116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production and characterization of thermostable alkaline protease of Bacillus subtilis (ATCC 6633) from optimized solid-state fermentation.
    Chatterjee J; Giri S; Maity S; Sinha A; Ranjan A; Rajshekhar ; Gupta S
    Biotechnol Appl Biochem; 2015; 62(5):709-18. PubMed ID: 25323045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of thermostable alkaline proteases from Bacillus infantis SKS1 isolated from garden soil.
    Saggu SK; Mishra PC
    PLoS One; 2017; 12(11):e0188724. PubMed ID: 29190780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery and engineering of enhanced SUMO protease enzymes.
    Lau YK; Baytshtok V; Howard TA; Fiala BM; Johnson JM; Carter LP; Baker D; Lima CD; Bahl CD
    J Biol Chem; 2018 Aug; 293(34):13224-13233. PubMed ID: 29976752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial alkaline proteases: molecular approaches and industrial applications.
    Gupta R; Beg QK; Lorenz P
    Appl Microbiol Biotechnol; 2002 Jun; 59(1):15-32. PubMed ID: 12073127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Thermostable Microbial Xylanases Toward its Industrial Applications.
    Kumar V; Dangi AK; Shukla P
    Mol Biotechnol; 2018 Mar; 60(3):226-235. PubMed ID: 29380253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotechnological Eminence of Chitinases: A Focus on Thermophilic Enzyme Sources, Production Strategies and Prominent Applications.
    Akram F; Akram R; Haq IU; Nawaz A; Jabbar Z; Ahmed Z
    Protein Pept Lett; 2021; 28(9):1009-1022. PubMed ID: 33602064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial alkaline serine proteases: Production, properties and applications.
    Matkawala F; Nighojkar S; Kumar A; Nighojkar A
    World J Microbiol Biotechnol; 2021 Mar; 37(4):63. PubMed ID: 33730214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermozymes and their applications: a review of recent literature and patents.
    Bruins ME; Janssen AE; Boom RM
    Appl Biochem Biotechnol; 2001 Feb; 90(2):155-86. PubMed ID: 11297390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developments in industrially important thermostable enzymes: a review.
    Haki GD; Rakshit SK
    Bioresour Technol; 2003 Aug; 89(1):17-34. PubMed ID: 12676497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and biotechnological aspects of microbial proteases.
    Rao MB; Tanksale AM; Ghatge MS; Deshpande VV
    Microbiol Mol Biol Rev; 1998 Sep; 62(3):597-635. PubMed ID: 9729602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteases from psychrotrophs: an overview.
    Kasana RC
    Crit Rev Microbiol; 2010 May; 36(2):134-45. PubMed ID: 20047457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the fermentable sugar yields of wheat straw by high-temperature pre-hydrolysis with thermophilic enzymes of Malbranchea cinnamomea.
    Zhu N; Jin H; Kong X; Zhu Y; Ye X; Xi Y; Du J; Li B; Lou M; Shah GM
    Microb Cell Fact; 2020 Jul; 19(1):149. PubMed ID: 32711527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of microbial proteases on biotechnological industries.
    Banerjee G; Ray AK
    Biotechnol Genet Eng Rev; 2017 Oct; 33(2):119-143. PubMed ID: 29205093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The production, properties, and applications of thermostable steryl glucosidases.
    Aguirre A; Eberhardt F; Hails G; Cerminati S; Castelli ME; Rasia RM; Paoletti L; Menzella HG; Peiru S
    World J Microbiol Biotechnol; 2018 Feb; 34(3):40. PubMed ID: 29468428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of proteolytic activity of a thermostable papain-like protease by structure-based rational design.
    Dutta S; Dattagupta JK; Biswas S
    PLoS One; 2013; 8(5):e62619. PubMed ID: 23671614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermophilic xylanases: from bench to bottle.
    Basit A; Liu J; Rahim K; Jiang W; Lou H
    Crit Rev Biotechnol; 2018 Nov; 38(7):989-1002. PubMed ID: 29343191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of thermostable phosphatase and proteases from thermophilically disposed transition species and thermophilic actinomycetes.
    Lalwani L; Rai V; Ali SS
    Indian J Exp Biol; 1997 May; 35(5):511-5. PubMed ID: 9378520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial proteases: ubiquitous enzymes with innumerable uses.
    Solanki P; Putatunda C; Kumar A; Bhatia R; Walia A
    3 Biotech; 2021 Oct; 11(10):428. PubMed ID: 34513551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Progress in the thermophilic and alkalophilic xylanases].
    Bai W; Wang Q; Ma Y
    Sheng Wu Gong Cheng Xue Bao; 2014 Jun; 30(6):828-37. PubMed ID: 25212001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.