BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 34648275)

  • 1. Glycine-Rich Peptides from FUS Have an Intrinsic Ability to Self-Assemble into Fibers and Networked Fibrils.
    Kar M; Posey AE; Dar F; Hyman AA; Pappu RV
    Biochemistry; 2021 Nov; 60(43):3213-3222. PubMed ID: 34648275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs.
    Lin Y; Currie SL; Rosen MK
    J Biol Chem; 2017 Nov; 292(46):19110-19120. PubMed ID: 28924037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible Kinetic Trapping of FUS Biomolecular Condensates.
    Chatterjee S; Kan Y; Brzezinski M; Koynov K; Regy RM; Murthy AC; Burke KA; Michels JJ; Mittal J; Fawzi NL; Parekh SH
    Adv Sci (Weinh); 2022 Feb; 9(4):e2104247. PubMed ID: 34862761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of FUS Protein Fibrils and Its Relevance to Self-Assembly and Phase Separation of Low-Complexity Domains.
    Murray DT; Kato M; Lin Y; Thurber KR; Hung I; McKnight SL; Tycko R
    Cell; 2017 Oct; 171(3):615-627.e16. PubMed ID: 28942918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational fluctuations and phases in fused in sarcoma (FUS) low-complexity domain.
    Thirumalai D; Kumar A; Chakraborty D; Straub JE; Mugnai ML
    Biopolymers; 2024 Mar; 115(2):e23558. PubMed ID: 37399327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidating the reversible and irreversible self-assembly mechanisms of low-complexity aromatic-rich kinked peptides and steric zipper peptides.
    Lao Z; Tang Y; Dong X; Tan Y; Li X; Liu X; Li L; Guo C; Wei G
    Nanoscale; 2024 Feb; 16(8):4025-4038. PubMed ID: 38347806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FUS oncofusion protein condensates recruit mSWI/SNF chromatin remodeler via heterotypic interactions between prion-like domains.
    Davis RB; Kaur T; Moosa MM; Banerjee PR
    Protein Sci; 2021 Jul; 30(7):1454-1466. PubMed ID: 34018649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins.
    Wang J; Choi JM; Holehouse AS; Lee HO; Zhang X; Jahnel M; Maharana S; Lemaitre R; Pozniakovsky A; Drechsel D; Poser I; Pappu RV; Alberti S; Hyman AA
    Cell; 2018 Jul; 174(3):688-699.e16. PubMed ID: 29961577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular structure and interactions within amyloid-like fibrils formed by a low-complexity protein sequence from FUS.
    Lee M; Ghosh U; Thurber KR; Kato M; Tycko R
    Nat Commun; 2020 Nov; 11(1):5735. PubMed ID: 33184287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FUS Microphase Separation: Regulation by Nucleic Acid Polymers and DNA Repair Proteins.
    Sukhanova MV; Anarbaev RO; Maltseva EA; Pastré D; Lavrik OI
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibril formation and ordering of disordered FUS LC driven by hydrophobic interactions.
    Maltseva D; Chatterjee S; Yu CC; Brzezinski M; Nagata Y; Gonella G; Murthy AC; Stachowiak JC; Fawzi NL; Parekh SH; Bonn M
    Nat Chem; 2023 Aug; 15(8):1146-1154. PubMed ID: 37231298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A unified mechanism for LLPS of ALS/FTLD-causing FUS as well as its modulation by ATP and oligonucleic acids.
    Kang J; Lim L; Lu Y; Song J
    PLoS Biol; 2019 Jun; 17(6):e3000327. PubMed ID: 31188823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RRM domain of ALS/FTD-causing FUS characteristic of irreversible unfolding spontaneously self-assembles into amyloid fibrils.
    Lu Y; Lim L; Song J
    Sci Rep; 2017 Apr; 7(1):1043. PubMed ID: 28432364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HspB8 prevents aberrant phase transitions of FUS by chaperoning its folded RNA-binding domain.
    Boczek EE; Fürsch J; Niedermeier ML; Jawerth L; Jahnel M; Ruer-Gruß M; Kammer KM; Heid P; Mediani L; Wang J; Yan X; Pozniakovski A; Poser I; Mateju D; Hubatsch L; Carra S; Alberti S; Hyman AA; Stengel F
    Elife; 2021 Sep; 10():. PubMed ID: 34487489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Side Chain Hydrogen-Bonding Interactions within Amyloid-like Fibrils Formed by the Low-Complexity Domain of FUS: Evidence from Solid State Nuclear Magnetic Resonance Spectroscopy.
    Murray DT; Tycko R
    Biochemistry; 2020 Feb; 59(4):364-378. PubMed ID: 31895552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular interactions contributing to FUS SYGQ LC-RGG phase separation and co-partitioning with RNA polymerase II heptads.
    Murthy AC; Tang WS; Jovic N; Janke AM; Seo DH; Perdikari TM; Mittal J; Fawzi NL
    Nat Struct Mol Biol; 2021 Nov; 28(11):923-935. PubMed ID: 34759379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycine rich segments adopt polyproline II helices: Implications for biomolecular condensate formation.
    Mompeán M; McAvan BS; Félix SS; Treviño MÁ; Oroz J; López-Sánchez R; Pantoja-Uceda D; Cabrita EJ; Doig AJ; Laurents DV
    Arch Biochem Biophys; 2021 Jun; 704():108867. PubMed ID: 33794191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the Atomistic Mechanisms of Phosphorylation in Disrupting Liquid-Liquid Phase Separation and Aggregation of the FUS Low-Complexity Domain.
    Lao Z; Dong X; Liu X; Li F; Chen Y; Tang Y; Wei G
    J Chem Inf Model; 2022 Jul; 62(13):3227-3238. PubMed ID: 35709363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Residue-by-Residue View of In Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase II.
    Burke KA; Janke AM; Rhine CL; Fawzi NL
    Mol Cell; 2015 Oct; 60(2):231-41. PubMed ID: 26455390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FUS fibrillation occurs through a nucleation-based process below the critical concentration required for liquid-liquid phase separation.
    Bertrand E; Demongin C; Dobra I; Rengifo-Gonzalez JC; Singatulina AS; Sukhanova MV; Lavrik OI; Pastré D; Hamon L
    Sci Rep; 2023 May; 13(1):7772. PubMed ID: 37179431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.