These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34648398)

  • 1. Repeated Genetic and Adaptive Phenotypic Divergence across Tidal Elevation in a Foundation Plant Species.
    Zerebecki RA; Sotka EE; Hanley TC; Bell KL; Gehring C; Nice CC; Richards CL; Hughes AR
    Am Nat; 2021 Nov; 198(5):E152-E169. PubMed ID: 34648398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flowering and biomass allocation in U.S. Atlantic coast Spartina alterniflora.
    Crosby SC; Ivens-Duran M; Bertness MD; Davey E; Deegan LA; Leslie HM
    Am J Bot; 2015 May; 102(5):669-76. PubMed ID: 26022481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant response to fungal root endophytes varies by host genotype in the foundation species Spartina alterniflora.
    Hughes AR; Moore AFP; Gehring C
    Am J Bot; 2020 Dec; 107(12):1645-1653. PubMed ID: 33252780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological and biochemical responses of the salt-marsh plant Spartina alterniflora to long-term wave exposure.
    Shao D; Zhou W; Bouma TJ; Asaeda T; Wang ZB; Liu X; Sun T; Cui B
    Ann Bot; 2020 Feb; 125(2):291-300. PubMed ID: 31120520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saltmarsh plant responses to eutrophication.
    Johnson DS; Warren RS; Deegan LA; Mozdzer TJ
    Ecol Appl; 2016 Dec; 26(8):2647-2659. PubMed ID: 27763699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lacunal allocation and gas transport capacity in the salt marsh grass Spartina alterniflora.
    Arenovski AL; Howes BL
    Oecologia; 1992 Jun; 90(3):316-322. PubMed ID: 28313517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.
    Yuan J; Ding W; Liu D; Kang H; Freeman C; Xiang J; Lin Y
    Glob Chang Biol; 2015 Apr; 21(4):1567-80. PubMed ID: 25367159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecosystem engineers drive creek formation in salt marshes.
    Vu HD; Wie Ski K; Pennings SC
    Ecology; 2017 Jan; 98(1):162-174. PubMed ID: 28052386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial modification on lateral hydrological connectivity promotes range expansion of invasive Spartina alterniflora in salt marshes of the Yellow River delta, China.
    Xie T; Wang Q; Ning Z; Chen C; Cui B; Bai J; Shi W; Pang B
    Sci Total Environ; 2021 May; 769():144476. PubMed ID: 33460837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A neighboring plant species creates associational refuge for consumer and host.
    Hughes AR
    Ecology; 2012 Jun; 93(6):1411-20. PubMed ID: 22834381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhizosphere microbial communities reflect genotypic and trait variation in a salt marsh ecosystem engineer.
    Lumibao CY; Bernik BM; Formel SK; Kandalepas D; Mighell KL; Pardue J; Van Bael SA; Blum MJ
    Am J Bot; 2020 Jun; 107(6):941-949. PubMed ID: 32533589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical stress, not biotic interactions, preclude an invasive grass from establishing in forb-dominated salt marshes.
    He Q; Cui B; An Y
    PLoS One; 2012; 7(3):e33164. PubMed ID: 22432003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BERM: a Belowground Ecosystem Resiliency Model for estimating Spartina alterniflora belowground biomass.
    O'Connell JL; Mishra DR; Alber M; Byrd KB
    New Phytol; 2021 Oct; 232(1):425-439. PubMed ID: 34242403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spartina alterniflora invasion increases soil inorganic nitrogen pools through interactions with tidal subsidies in the Yangtze Estuary, China.
    Peng RH; Fang CM; Li B; Chen JK
    Oecologia; 2011 Mar; 165(3):797-807. PubMed ID: 21203776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-acquisition traits link aboveground biomass and environment in inner saline-alkaline herbaceous marshes.
    Ying L; Maohua M; Zhi D; Bo L; Ming J; Xianguo L; Yanjing L
    Sci Total Environ; 2023 Jan; 857(Pt 3):159660. PubMed ID: 36302420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of salt marshes to oiling from the Deepwater Horizon spill: Implications for plant growth, soil surface-erosion, and shoreline stability.
    Lin Q; Mendelssohn IA; Graham SA; Hou A; Fleeger JW; Deis DR
    Sci Total Environ; 2016 Jul; 557-558():369-77. PubMed ID: 27016685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scale-dependent biogeomorphic feedbacks control the tidal marsh evolution under Spartina alterniflora invasion.
    Wang D; Bai J; Gu C; Gao W; Zhang C; Gong Z; Cui B
    Sci Total Environ; 2021 Jul; 776():146495. PubMed ID: 33867159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Groundwater controls ecological zonation of salt marsh macrophytes.
    Wilson AM; Evans T; Moore W; Schutte CA; Joye SB; Hughes AH; Anderson JL
    Ecology; 2015 Mar; 96(3):840-9. PubMed ID: 26236879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consumer trait variation influences tritrophic interactions in salt marsh communities.
    Hughes AR; Hanley TC; Orozco NP; Zerebecki RA
    Ecol Evol; 2015 Jul; 5(13):2659-72. PubMed ID: 26257878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subsurface aeration of tidal wetland soils: Root-system structure and aerenchyma connectivity in Spartina (Poaceae).
    Granse D; Titschack J; Ainouche M; Jensen K; Koop-Jakobsen K
    Sci Total Environ; 2022 Jan; 802():149771. PubMed ID: 34525732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.