These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34648454)

  • 1. FITFES: A Wearable Myoelectrically Controlled Functional Electrical Stimulator Designed Using a User-Centered Approach.
    Crepaldi M; Thorsen R; Jonsdottir J; Scarpetta S; De Michieli L; Salvo MD; Zini G; Laffranchi M; Ferrarin M
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2142-2152. PubMed ID: 34648454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 16-Channel biphasic current-mode programmable charge balanced neural stimulation.
    Li X; Zhong S; Morizio J
    Biomed Eng Online; 2017 Aug; 16(1):104. PubMed ID: 28806960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wearable, battery-powered, wireless, programmable 8-channel neural stimulator.
    Farahmand S; Vahedian H; Abedinkhan Eslami M; Sodagar AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6120-3. PubMed ID: 23367325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arbitrary waveform constant current stimulator for long-term wearable applications.
    Breen PP; Serrador JM; Gargiulo GD
    Med Eng Phys; 2019 Jun; 68():108-115. PubMed ID: 31003910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Battery powered neuromuscular stimulator circuit for use during simultaneous recording of myoelectric signals.
    Thorsen R; Ferrarin M
    Med Eng Phys; 2009 Oct; 31(8):1032-7. PubMed ID: 19620017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Development of a Wearable Wireless ECG Monitoring System with Ultra-low Power Consumption].
    Sun Z; Ye J; Zhang X; Yuan M; Zhong Z; Tan X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2020 Jan; 44(1):28-32. PubMed ID: 32343062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arm rehabilitation in post stroke subjects: A randomized controlled trial on the efficacy of myoelectrically driven FES applied in a task-oriented approach.
    Jonsdottir J; Thorsen R; Aprile I; Galeri S; Spannocchi G; Beghi E; Bianchi E; Montesano A; Ferrarin M
    PLoS One; 2017; 12(12):e0188642. PubMed ID: 29200424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solar Energy Harvesting to Improve Capabilities of Wearable Devices.
    Páez-Montoro A; García-Valderas M; Olías-Ruíz E; López-Ongil C
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-power transcutaneous current stimulator for wearable applications.
    Karpul D; Cohen GK; Gargiulo GD; van Schaik A; McIntyre S; Breen PP
    Biomed Eng Online; 2017 Oct; 16(1):118. PubMed ID: 28974217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A stimulator for functional activation of denervated muscles.
    Hofer C; Mayr W; Stöhr H; Unger E; Kern H
    Artif Organs; 2002 Mar; 26(3):276-9. PubMed ID: 11940032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. End-user and clinician perspectives on the viability of wearable functional electrical stimulation garments after stroke and spinal cord injury.
    Moineau B; Myers M; Ali SS; Popovic MR; Hitzig SL
    Disabil Rehabil Assist Technol; 2021 Apr; 16(3):241-250. PubMed ID: 31592679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volitional EMG Controlled Wearable FES System for Lower Limb Rehabilitation.
    Jung J; Lee DW; Son Y; Kim B; Gu J; Shin HC
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7099-7102. PubMed ID: 34892737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pilot study of myoelectrically controlled FES of upper extremity.
    Thorsen R; Spadone R; Ferrarin M
    IEEE Trans Neural Syst Rehabil Eng; 2001 Jun; 9(2):161-8. PubMed ID: 11474969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A wearable multi-pad electrode prototype for selective functional electrical stimulation of upper extremities.
    Hai-Peng Wang ; Ai-Wen Guo ; Zheng-Yang Bi ; Fei Li ; Xiao-Ying Lu ; Zhi-Gong Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():714-717. PubMed ID: 29059972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance flexible energy storage and harvesting system for wearable electronics.
    Ostfeld AE; Gaikwad AM; Khan Y; Arias AC
    Sci Rep; 2016 May; 6():26122. PubMed ID: 27184194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Cost and Active Control of Radiation of Wearable Medical Health Device for Wireless Body Area Network.
    Jin Y
    J Med Syst; 2019 Apr; 43(5):137. PubMed ID: 30963291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Miniaturized Low-Intensity Ultrasound Device for Wearable Medical Therapeutic Applications.
    Jiang X; Ng WT; Chen J
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1372-1382. PubMed ID: 31613782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wirelessly powered stimulator and recorder for neuronal interfaces.
    Nag S; Sharma D
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5612-6. PubMed ID: 22255612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural Sugar-Assisted, Chemically Reinforced, Highly Durable Piezoorganic Nanogenerator with Superior Power Density for Self-Powered Wearable Electronics.
    Maity K; Garain S; Henkel K; Schmeißer D; Mandal D
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44018-44032. PubMed ID: 30456939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a pulse-triggered four-channel functional electrical stimulator using complementary current source and time division multiplexing output method.
    Wang HP; Wang ZG; Lü XY; Huang ZH; Zhou YX
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1671-4. PubMed ID: 26736597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.