These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34648459)

  • 41. Enhancing detection of steady-state visual evoked potentials using channel ensemble method.
    Yan W; Du C; Luo D; Wu Y; Duan N; Zheng X; Xu G
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33601356
    [No Abstract]   [Full Text] [Related]  

  • 42. A High-Speed SSVEP-Based BCI Using Dry EEG Electrodes.
    Xing X; Wang Y; Pei W; Guo X; Liu Z; Wang F; Ming G; Zhao H; Gui Q; Chen H
    Sci Rep; 2018 Oct; 8(1):14708. PubMed ID: 30279463
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A two-step idle-state detection method for SSVEP BCI.
    Du J; Ke Y; Liu P; Liu W; Kong L; Wang N; Xu M; An X; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3095-3098. PubMed ID: 31946542
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Methodology for Enhancing SSVEP Features Using Adaptive Filtering Based on the Spatial Distribution of EEG Signals.
    Wang S; Ji B; Shao D; Chen W; Gao K
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241600
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Canonical Correlation Analysis-Based Transfer Learning Framework for Enhancing the Performance of SSVEP-Based BCIs.
    Wei Q; Zhang Y; Wang Y; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2809-2821. PubMed ID: 37342949
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhancing unsupervised canonical correlation analysis-based frequency detection of SSVEPs by incorporating background EEG.
    Nakanishi M; Wang Y; Wang YT; Mitsukura Y; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3053-6. PubMed ID: 25570635
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Information Bottleneck as Optimisation Method for SSVEP-Based BCI.
    Ingel A; Vicente R
    Front Hum Neurosci; 2021; 15():675091. PubMed ID: 34557078
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel spatial filter for SSVEP-based BCI: A generated reference filter approach.
    Sözer AT; Fidan CB
    Comput Biol Med; 2018 May; 96():98-105. PubMed ID: 29554548
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Complex sparse spatial filter for decoding mixed frequency and phase coded steady-state visually evoked potentials.
    Morikawa N; Tanaka T; Islam MR
    J Neurosci Methods; 2018 Jul; 304():1-10. PubMed ID: 29653130
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Generating visual flickers for eliciting robust steady-state visual evoked potentials at flexible frequencies using monitor refresh rate.
    Nakanishi M; Wang Y; Wang YT; Mitsukura Y; Jung TP
    PLoS One; 2014; 9(6):e99235. PubMed ID: 24918435
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Online Brain-Computer Interface Based on SSVEPs Measured From Non-Hair-Bearing Areas.
    Wang YT; Nakanishi M; Wang Y; Wei CS; Cheng CK; Jung TP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):11-18. PubMed ID: 27254871
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A multi-day and multi-band dataset for a steady-state visual-evoked potential-based brain-computer interface.
    Choi GY; Han CH; Jung YJ; Hwang HJ
    Gigascience; 2019 Nov; 8(11):. PubMed ID: 31765472
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Decoding of responses to mixed frequency and phase coded visual stimuli using multiset canonical correlation analysis.
    Suefusa K; Tanaka T
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1492-1495. PubMed ID: 28268609
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Independent Vector Analysis for SSVEP Signal Enhancement, Detection, and Topographical Mapping.
    Emge DK; Vialatte FB; Dreyfus G; Adalı T
    Brain Topogr; 2018 Jan; 31(1):117-124. PubMed ID: 26936596
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Developing an online steady-state visual evoked potential-based brain-computer interface system using EarEEG.
    Wang YT; Nakanishi M; Kappel SL; Kidmose P; Mandic DP; Wang Y; Cheng CK; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2271-4. PubMed ID: 26736745
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Frequency-modulated steady-state visual evoked potentials: a new stimulation method for brain-computer interfaces.
    Dreyer AM; Herrmann CS
    J Neurosci Methods; 2015 Feb; 241():1-9. PubMed ID: 25522824
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.