These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34648536)

  • 1. Bayesian analysis of static light scattering data for globular proteins.
    Yin F; Khago D; Martin RW; Butts CT
    PLoS One; 2021; 16(10):e0258429. PubMed ID: 34648536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interest of the normalized second virial coefficient and interaction potentials for crystallizing large macromolecules.
    Bonneté F; Vivarès D
    Acta Crystallogr D Biol Crystallogr; 2002 Oct; 58(Pt 10 Pt 1):1571-5. PubMed ID: 12351864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The second virial coefficient as a predictor of protein aggregation propensity: A self-interaction chromatography study.
    Quigley A; Williams DR
    Eur J Pharm Biopharm; 2015 Oct; 96():282-90. PubMed ID: 26259782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of protein Ramachandran psi (ψ) angle using non-resonance visible raman scattering measurements.
    Bhattacharya S; Ghosh S; Pandey NK; Chaudhury S; Dasgupta S; Roy A
    J Phys Chem B; 2013 Nov; 117(45):13993-4000. PubMed ID: 24134469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studying the mechanism of phase separation in aqueous solutions of globular proteins
    Brudar S; Gujt J; Spohr E; Hribar-Lee B
    Phys Chem Chem Phys; 2021 Jan; 23(1):415-424. PubMed ID: 33319872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonequivalence of second virial coefficients from sedimentation equilibrium and static light scattering studies of protein solutions.
    Winzor DJ; Deszczynski M; Harding SE; Wills PR
    Biophys Chem; 2007 Jun; 128(1):46-55. PubMed ID: 17382457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein interactions in undersaturated and supersaturated solutions: a study using light and x-ray scattering.
    Narayanan J; Liu XY
    Biophys J; 2003 Jan; 84(1):523-32. PubMed ID: 12524304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpretation of negative second virial coefficients from non-attractive protein solution osmotic pressure data: an alternate perspective.
    McBride DW; Rodgers VG
    Biophys Chem; 2013 Dec; 184():79-86. PubMed ID: 24141326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental support for reclassification of the light scattering second virial coefficient from macromolecular solutions as a hydrodynamic parameter.
    Winzor DJ; Dinu V; Scott DJ; Harding SE
    Eur Biophys J; 2023 Jul; 52(4-5):343-352. PubMed ID: 37460663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements.
    Kuehner DE; Heyer C; Rämsch C; Fornefeld UM; Blanch HW; Prausnitz JM
    Biophys J; 1997 Dec; 73(6):3211-24. PubMed ID: 9414232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of lysozyme in guanidinium chloride solutions from static and dynamic light-scattering measurements.
    Liu W; Cellmer T; Keerl D; Prausnitz JM; Blanch HW
    Biotechnol Bioeng; 2005 May; 90(4):482-90. PubMed ID: 15778988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human αB-crystallin discriminates between aggregation-prone and function-preserving variants of a client protein.
    Sprague-Piercy MA; Wong E; Roskamp KW; Fakhoury JN; Freites JA; Tobias DJ; Martin RW
    Biochim Biophys Acta Gen Subj; 2020 Mar; 1864(3):129502. PubMed ID: 31812542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein aggregation in salt solutions.
    Kastelic M; Kalyuzhnyi YV; Hribar-Lee B; Dill KA; Vlachy V
    Proc Natl Acad Sci U S A; 2015 May; 112(21):6766-70. PubMed ID: 25964322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inclusion of mPRISM potential for polymer-induced protein interactions enables modeling of second osmotic virial coefficients in aqueous polymer-salt solutions.
    Herhut M; Brandenbusch C; Sadowski G
    Biotechnol J; 2016 Jan; 11(1):146-54. PubMed ID: 26250594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Second Virial Coefficient As Determined from Protein Phase Behavior.
    Platten F; Hansen J; Wagner D; Egelhaaf SU
    J Phys Chem Lett; 2016 Oct; 7(19):4008-4014. PubMed ID: 27662500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deamidation of Human γS-Crystallin Increases Attractive Protein Interactions: Implications for Cataract.
    Pande A; Mokhor N; Pande J
    Biochemistry; 2015 Aug; 54(31):4890-9. PubMed ID: 26158710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of alcohols on aqueous lysozyme-lysozyme interactions from static light-scattering measurements.
    Liu W; Bratko D; Prausnitz JM; Blanch HW
    Biophys Chem; 2004 Feb; 107(3):289-98. PubMed ID: 14967244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring Ultra-Weak Protein Self-Association by Non-ideal Sedimentation Velocity.
    Chaturvedi SK; Sagar V; Zhao H; Wistow G; Schuck P
    J Am Chem Soc; 2019 Feb; 141(7):2990-2996. PubMed ID: 30668114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid measurement of protein osmotic second virial coefficients by self-interaction chromatography.
    Tessier PM; Lenhoff AM; Sandler SI
    Biophys J; 2002 Mar; 82(3):1620-31. PubMed ID: 11867474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.