These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 34648550)
1. Predicting drug targets by homology modelling of Pseudomonas aeruginosa proteins of unknown function. Babic N; Kovacic F PLoS One; 2021; 16(10):e0258385. PubMed ID: 34648550 [TBL] [Abstract][Full Text] [Related]
2. Prioritization of potential drug targets against P. aeruginosa by core proteomic analysis using computational subtractive genomics and Protein-Protein interaction network. Uddin R; Jamil F Comput Biol Chem; 2018 Jun; 74():115-122. PubMed ID: 29587180 [TBL] [Abstract][Full Text] [Related]
3. Molecular Insights into Binding Mode and Interactions of Structure-Based Virtually Screened Inhibitors for Almihyawi RAH; Al-Hasani HMH; Jassim TS; Muhseen ZT; Zhang S; Chen G Molecules; 2021 Nov; 26(22):. PubMed ID: 34833903 [TBL] [Abstract][Full Text] [Related]
4. Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR). Ilangovan A; Fletcher M; Rampioni G; Pustelny C; Rumbaugh K; Heeb S; Cámara M; Truman A; Chhabra SR; Emsley J; Williams P PLoS Pathog; 2013; 9(7):e1003508. PubMed ID: 23935486 [TBL] [Abstract][Full Text] [Related]
5. The putative bacterial oxygen sensor Pseudomonas prolyl hydroxylase (PPHD) suppresses antibiotic resistance and pathogenicity in Schaible B; Crifo B; Schaffer K; Taylor CT J Biol Chem; 2020 Jan; 295(5):1195-1201. PubMed ID: 31826919 [No Abstract] [Full Text] [Related]
6. Chimeric Protein-Protein Interface Inhibitors Allow Efficient Inhibition of Type III Secretion Machinery and Ngo TD; Plé S; Thomas A; Barette C; Fortuné A; Bouzidi Y; Fauvarque MO; Pereira de Freitas R; Francisco Hilário F; Attrée I; Wong YS; Faudry E ACS Infect Dis; 2019 Nov; 5(11):1843-1854. PubMed ID: 31525902 [No Abstract] [Full Text] [Related]
7. Anti-Virulence Strategy against the Multidrug-Resistant Bacterial Pathogen Pseudomonas aeruginosa: Pseudolysin (Elastase B) as a Potential Druggable Target. Galdino ACM; de Oliveira MP; Ramalho TC; de Castro AA; Branquinha MH; Santos ALS Curr Protein Pept Sci; 2019; 20(5):471-487. PubMed ID: 30727891 [TBL] [Abstract][Full Text] [Related]
8. TpiA is a Key Metabolic Enzyme That Affects Virulence and Resistance to Aminoglycoside Antibiotics through CrcZ in Pseudomonas aeruginosa. Xia Y; Wang D; Pan X; Xia B; Weng Y; Long Y; Ren H; Zhou J; Jin Y; Bai F; Cheng Z; Jin S; Wu W mBio; 2020 Jan; 11(1):. PubMed ID: 31911486 [TBL] [Abstract][Full Text] [Related]
9. Integrated whole-genome screening for Pseudomonas aeruginosa virulence genes using multiple disease models reveals that pathogenicity is host specific. Dubern JF; Cigana C; De Simone M; Lazenby J; Juhas M; Schwager S; Bianconi I; Döring G; Eberl L; Williams P; Bragonzi A; Cámara M Environ Microbiol; 2015 Nov; 17(11):4379-93. PubMed ID: 25845292 [TBL] [Abstract][Full Text] [Related]
10. The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa. Linares JF; Moreno R; Fajardo A; Martínez-Solano L; Escalante R; Rojo F; Martínez JL Environ Microbiol; 2010 Dec; 12(12):3196-212. PubMed ID: 20626455 [TBL] [Abstract][Full Text] [Related]
11. Tackling Pseudomonas aeruginosa Virulence by a Hydroxamic Acid-Based LasB Inhibitor. Kany AM; Sikandar A; Yahiaoui S; Haupenthal J; Walter I; Empting M; Köhnke J; Hartmann RW ACS Chem Biol; 2018 Sep; 13(9):2449-2455. PubMed ID: 30088919 [TBL] [Abstract][Full Text] [Related]
12. PA2800 plays an important role in both antibiotic susceptibility and virulence in Pseudomonas aeruginosa. Shen L; Gao X; Wei J; Chen L; Zhao X; Li B; Duan K Curr Microbiol; 2012 Nov; 65(5):601-9. PubMed ID: 22878555 [TBL] [Abstract][Full Text] [Related]
13. Pseudomonas aeruginosa LptE is crucial for LptD assembly, cell envelope integrity, antibiotic resistance and virulence. Lo Sciuto A; Martorana AM; Fernández-Piñar R; Mancone C; Polissi A; Imperi F Virulence; 2018; 9(1):1718-1733. PubMed ID: 30354941 [TBL] [Abstract][Full Text] [Related]
14. Penicillin-Binding Protein 3 Is Essential for Growth of Pseudomonas aeruginosa. Chen W; Zhang YM; Davies C Antimicrob Agents Chemother; 2017 Jan; 61(1):. PubMed ID: 27821444 [TBL] [Abstract][Full Text] [Related]
15. Pseudomonas aeruginosa Regulatory Protein AnvM Controls Pathogenicity in Anaerobic Environments and Impacts Host Defense. Zhang Y; Zhou CM; Pu Q; Wu Q; Tan S; Shao X; Zhang W; Xie Y; Li R; Yu XJ; Wang R; Zhang L; Wu M; Deng X mBio; 2019 Jul; 10(4):. PubMed ID: 31337721 [No Abstract] [Full Text] [Related]
17. Design, synthesis, and evaluation of pyrazolo-pyrazole derivatives on Methylisocitratelyase of Pseudomonas aeruginosa: in silico and in vitro study. Pulaganti M; C M A; Kumar CS J Biomol Struct Dyn; 2017 Aug; 35(11):2509-2529. PubMed ID: 27686121 [TBL] [Abstract][Full Text] [Related]
18. Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. Aparna V; Dineshkumar K; Mohanalakshmi N; Velmurugan D; Hopper W PLoS One; 2014; 9(7):e101840. PubMed ID: 25025665 [TBL] [Abstract][Full Text] [Related]
19. Identification of reciprocal adhesion genes in pathogenic and non-pathogenic Pseudomonas. Duque E; de la Torre J; Bernal P; Molina-Henares MA; Alaminos M; Espinosa-Urgel M; Roca A; Fernández M; de Bentzmann S; Ramos JL Environ Microbiol; 2013 Jan; 15(1):36-48. PubMed ID: 22458445 [TBL] [Abstract][Full Text] [Related]
20. Review: Antibiotic discovery in the age of structural biology - a comprehensive overview with special reference to development of drugs for the treatment of Pseudomonas aeruginosa infection. Koehnke A; Friedrich RE In Vivo; 2015; 29(2):161-7. PubMed ID: 25792642 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]