BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 34648607)

  • 41. Induction of the Yersinia pestis PhoP-PhoQ regulatory system in the flea and its role in producing a transmissible infection.
    Rebeil R; Jarrett CO; Driver JD; Ernst RK; Oyston PC; Hinnebusch BJ
    J Bacteriol; 2013 May; 195(9):1920-30. PubMed ID: 23435973
    [TBL] [Abstract][Full Text] [Related]  

  • 42. "Fleaing" the Plague: Adaptations of Yersinia pestis to Its Insect Vector That Lead to Transmission.
    Hinnebusch BJ; Jarrett CO; Bland DM
    Annu Rev Microbiol; 2017 Sep; 71():215-232. PubMed ID: 28886687
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Silencing urease: a key evolutionary step that facilitated the adaptation of Yersinia pestis to the flea-borne transmission route.
    Chouikha I; Hinnebusch BJ
    Proc Natl Acad Sci U S A; 2014 Dec; 111(52):18709-14. PubMed ID: 25453069
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis.
    Lorange EA; Race BL; Sebbane F; Hinnebusch BJ
    J Infect Dis; 2005 Jun; 191(11):1907-12. PubMed ID: 15871125
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics.
    Eisen RJ; Bearden SW; Wilder AP; Montenieri JA; Antolin MF; Gage KL
    Proc Natl Acad Sci U S A; 2006 Oct; 103(42):15380-5. PubMed ID: 17032761
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Examining the vector-host-pathogen interface with quantitative molecular tools.
    Comer JE; Lorange EA; Hinnebusch BJ
    Methods Mol Biol; 2008; 431():123-31. PubMed ID: 18287752
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selective isolation of Yersinia pestis from plague-infected fleas.
    Sarovich DS; Colman RE; Price EP; Chung WK; Lee J; Schupp JM; Cobble KR; Busch JD; Alexander J; Keim P; Wagner DM
    J Microbiol Methods; 2010 Jul; 82(1):95-7. PubMed ID: 20385178
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New method for plague surveillance using polymerase chain reaction to detect Yersinia pestis in fleas.
    Hinnebusch J; Schwan TG
    J Clin Microbiol; 1993 Jun; 31(6):1511-4. PubMed ID: 8314993
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague.
    Sebbane F; Jarrett CO; Gardner D; Long D; Hinnebusch BJ
    Proc Natl Acad Sci U S A; 2006 Apr; 103(14):5526-30. PubMed ID: 16567636
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Use of DNA hybridizations probes for detection of the plague bacillus (Yersinia pestis) in fleas (Siphonaptera: Pulicidae and Ceratophyllidae).
    Thomas RE; McDonough KA; Schwan TG
    J Med Entomol; 1989 Jul; 26(4):342-8. PubMed ID: 2769715
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of the role of the Yersinia pestis plasminogen activator and other plasmid-encoded factors in temperature-dependent blockage of the flea.
    Hinnebusch BJ; Fischer ER; Schwan TG
    J Infect Dis; 1998 Nov; 178(5):1406-15. PubMed ID: 9780262
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Role of Early-Phase Transmission in the Spread of Yersinia pestis.
    Eisen RJ; Dennis DT; Gage KL
    J Med Entomol; 2015 Nov; 52(6):1183-92. PubMed ID: 26336267
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Feeding Behavior Modulates Biofilm-Mediated Transmission of Yersinia pestis by the Cat Flea, Ctenocephalides felis.
    Bland DM; Hinnebusch BJ
    PLoS Negl Trop Dis; 2016 Feb; 10(2):e0004413. PubMed ID: 26829486
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Yersinia pestis insecticidal-like toxin complex (Tc) family proteins: characterization of expression, subcellular localization, and potential role in infection of the flea vector.
    Spinner JL; Jarrett CO; LaRock DL; Miller SI; Collins CM; Hinnebusch BJ
    BMC Microbiol; 2012 Dec; 12():296. PubMed ID: 23249165
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of the Yersinia pestis yersiniabactin iron acquisition system in the incidence of flea-borne plague.
    Sebbane F; Jarrett C; Gardner D; Long D; Hinnebusch BJ
    PLoS One; 2010 Dec; 5(12):e14379. PubMed ID: 21179420
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transmission of flea-borne zoonotic agents.
    Eisen RJ; Gage KL
    Annu Rev Entomol; 2012; 57():61-82. PubMed ID: 21888520
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transmission efficiency of the plague pathogen (Y. pestis) by the flea, Xenopsylla skrjabini, to mice and great gerbils.
    Zhang Y; Dai X; Wang Q; Chen H; Meng W; Wu K; Luo T; Wang X; Rehemu A; Guo R; Yu X; Yang R; Cao H; Song Y
    Parasit Vectors; 2015 May; 8():256. PubMed ID: 25928441
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recombinant murine toxin from Yersinia pestis shows high toxicity and β-adrenergic blocking activity in mice.
    Fan Y; Zhou Y; Feng N; Wang Q; Tian G; Wu X; Liu Z; Bi Y; Yang R; Wang X
    Microbes Infect; 2016 May; 18(5):329-35. PubMed ID: 26774329
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Temporal dynamics of early-phase transmission of Yersinia pestis by unblocked fleas: secondary infectious feeds prolong efficient transmission by Oropsylla montana (Siphonaptera: Ceratophyllidae).
    Eisen RJ; Lowell JL; Montenieri JA; Bearden SW; Gage KL
    J Med Entomol; 2007 Jul; 44(4):672-7. PubMed ID: 17695024
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantities of Yersinia pestis in fleas (Siphonaptera: Pulicidae, Ceratophyllidae, and Hystrichopsyllidae) collected from areas of known or suspected plague activity.
    Engelthaler DM; Gage KL
    J Med Entomol; 2000 May; 37(3):422-6. PubMed ID: 15535587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.