BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34648705)

  • 1. Catalytic Fields as a Tool to Analyze Enzyme Reaction Mechanism Variants and Reaction Steps.
    Kędzierski P; Moskal M; Sokalski WA
    J Phys Chem B; 2021 Oct; 125(42):11606-11616. PubMed ID: 34648705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the conserved active site residues of histidyl tRNA synthetase on the mechanism of aminoacylation reaction.
    Banik SD; Nandi N
    Biophys Chem; 2011 Sep; 158(1):61-72. PubMed ID: 21636210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aminoacylation reaction in the histidyl-tRNA synthetase: fidelity mechanism of the activation step.
    Banik SD; Nandi N
    J Phys Chem B; 2010 Feb; 114(6):2301-11. PubMed ID: 20104869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure analysis of the activation of histidine by Thermus thermophilus histidyl-tRNA synthetase.
    Aberg A; Yaremchuk A; Tukalo M; Rasmussen B; Cusack S
    Biochemistry; 1997 Mar; 36(11):3084-94. PubMed ID: 9115984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of the active site loops in catalyzing aminoacylation reaction in seryl and histidyl tRNA synthetases.
    Dutta S; Kundu S; Saha A; Nandi N
    J Biomol Struct Dyn; 2018 Mar; 36(4):878-892. PubMed ID: 28317434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aminoacylation at the Atomic Level in Class IIa Aminoacyl-tRNA Synthetases.
    Arnez JG; Sankaranarayanan R; Dock-Bregeon AC; Francklyn CS; Moras D
    J Biomol Struct Dyn; 2000; 17 Suppl 1():23-7. PubMed ID: 22607403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free Energy Landscape of the Adenylation Reaction of the Aminoacylation Process at the Active Site of Aspartyl tRNA Synthetase.
    Dutta S; Chandra A
    J Phys Chem B; 2022 Aug; 126(31):5821-5831. PubMed ID: 35895864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of the activation step of the aminoacylation reaction: a significant difference between class I and class II synthetases.
    Banik SD; Nandi N
    J Biomol Struct Dyn; 2012; 30(6):701-15. PubMed ID: 22731388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation and distance dependent chiral discrimination in the first step of the aminoacylation reaction: integrated molecular orbital and semi-empirical method (ONIOM) based calculation.
    Banik SD; Nandi N
    Colloids Surf B Biointerfaces; 2009 Dec; 74(2):468-76. PubMed ID: 19682871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active site of lysyl-tRNA synthetase: structural studies of the adenylation reaction.
    Desogus G; Todone F; Brick P; Onesti S
    Biochemistry; 2000 Jul; 39(29):8418-25. PubMed ID: 10913247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The first step of aminoacylation at the atomic level in histidyl-tRNA synthetase.
    Arnez JG; Augustine JG; Moras D; Francklyn CS
    Proc Natl Acad Sci U S A; 1997 Jul; 94(14):7144-9. PubMed ID: 9207058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric amino acid activation by class II histidyl-tRNA synthetase from Escherichia coli.
    Guth E; Farris M; Bovee M; Francklyn CS
    J Biol Chem; 2009 Jul; 284(31):20753-62. PubMed ID: 19487703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-assisted catalysis in a protein enzyme: The 2'-hydroxyl of tRNA(Thr) A76 promotes aminoacylation by threonyl-tRNA synthetase.
    Minajigi A; Francklyn CS
    Proc Natl Acad Sci U S A; 2008 Nov; 105(46):17748-53. PubMed ID: 18997014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histidyl-tRNA synthetase.
    Freist W; Verhey JF; Rühlmann A; Gauss DH; Arnez JG
    Biol Chem; 1999 Jun; 380(6):623-46. PubMed ID: 10430027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlating amino acid conservation with function in tyrosyl-tRNA synthetase.
    Xin Y; Li W; Dwyer DS; First EA
    J Mol Biol; 2000 Oct; 303(2):287-98. PubMed ID: 11023793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic defects in mutants of class II histidyl-tRNA synthetase from Salmonella typhimurium previously linked to decreased control of histidine biosynthesis regulation.
    Francklyn C; Adams J; Augustine J
    J Mol Biol; 1998 Jul; 280(5):847-58. PubMed ID: 9671554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate interaction defects in histidyl-tRNA synthetase linked to dominant axonal peripheral neuropathy.
    Abbott JA; Meyer-Schuman R; Lupo V; Feely S; Mademan I; Oprescu SN; Griffin LB; Alberti MA; Casasnovas C; Aharoni S; Basel-Vanagaite L; Züchner S; De Jonghe P; Baets J; Shy ME; Espinós C; Demeler B; Antonellis A; Francklyn C
    Hum Mutat; 2018 Mar; 39(3):415-432. PubMed ID: 29235198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active site nanospace of aminoacyl tRNA synthetase: difference between the class I and class II synthetases.
    Dutta S; Choudhury K; Banik SD; Nandi N
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2280-98. PubMed ID: 24745224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of histidine recognition in human and trypanosomatid histidyl-tRNA synthetases.
    Koh CY; Wetzel AB; de van der Schueren WJ; Hol WG
    Biochimie; 2014 Nov; 106():111-20. PubMed ID: 25151410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for recognition of G-1-containing tRNA by histidyl-tRNA synthetase.
    Tian Q; Wang C; Liu Y; Xie W
    Nucleic Acids Res; 2015 Mar; 43(5):2980-90. PubMed ID: 25722375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.