These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 34648820)
21. Detection of Citrus leprosis virus C using specific primers and TaqMan probe in one-step real-time reverse-transcription polymerase chain reaction assays. Choudhary N; Wei G; Govindarajulu A; Roy A; Li W; Picton DD; Nakhla MK; Levy L; Brlansky RH J Virol Methods; 2015 Nov; 224():105-9. PubMed ID: 26341059 [TBL] [Abstract][Full Text] [Related]
22. A simple, rapid method of nucleic acid extraction without tissue homogenization for detecting viroids by hybridization and RT-PCR. Nakahara K; Hataya T; Uyeda I J Virol Methods; 1999 Jan; 77(1):47-58. PubMed ID: 10029324 [TBL] [Abstract][Full Text] [Related]
23. A rapid and sensitive dot-blot hybridization assay for the detection of citrus exocortis viroid in Citrus medica with digoxigenin-labelled RNA probes. Fonseca ME; Marcellino LH; Gander E J Virol Methods; 1996 Apr; 57(2):203-7. PubMed ID: 8801232 [TBL] [Abstract][Full Text] [Related]
24. Universal Primers for Rapid Detection of Six Pospiviroids in Solanaceae Plants Using One-Step Reverse-Transcription PCR and Reverse-Transcription Loop-Mediated Isothermal Amplification. Tseng YW; Wu CF; Lee CH; Chang CJ; Chen YK; Jan FJ Plant Dis; 2021 Oct; 105(10):2867-2872. PubMed ID: 33851864 [TBL] [Abstract][Full Text] [Related]
25. Application of a simple and affordable protocol for isolating plant total nucleic acids for RNA and DNA virus detection. Arruabarrena A; Benítez-Galeano MJ; Giambiasi M; Bertalmío A; Colina R; Hernández-Rodríguez L J Virol Methods; 2016 Nov; 237():14-17. PubMed ID: 27542529 [TBL] [Abstract][Full Text] [Related]
26. A novel multiplex RT-PCR probe capture hybridization (RT-PCR-ELISA) for simultaneous detection of six viroids in four genera: Apscaviroid, Hostuviroid, Pelamoviroid, and Pospiviroid. Shamloul AM; Faggioli F; Keith JM; Hadidi A J Virol Methods; 2002 Aug; 105(1):115-21. PubMed ID: 12176148 [TBL] [Abstract][Full Text] [Related]
27. Improvement in the sensitivity of viroid detection by adapting the reverse transcription step in one-step RT-qPCR assays. Leichtfried T; Reisenzein H; Steinkellner S; Gottsberger RA J Virol Methods; 2021 Jun; 292():114123. PubMed ID: 33711376 [TBL] [Abstract][Full Text] [Related]
28. Development and application of reverse transcription droplet digital PCR assay for sensitive detection of apple scar skin viroid during in vitro propagation of apple plantlets. Lee HJ; Han YS; Cho IS; Jeong RD Mol Cell Probes; 2022 Feb; 61():101789. PubMed ID: 34965481 [TBL] [Abstract][Full Text] [Related]
29. Development of a duplex one-step RT-qPCR assay for the simultaneous detection of Apple scar skin viroid and plant RNA internal control. Khan S; Mackay J; Liefting L; Ward L J Virol Methods; 2015 Sep; 221():100-5. PubMed ID: 25962536 [TBL] [Abstract][Full Text] [Related]
30. A novel RT-PCR approach for detection and characterization of citrus viroids. Bernad L; Duran-Vila N Mol Cell Probes; 2006 Apr; 20(2):105-13. PubMed ID: 16464560 [TBL] [Abstract][Full Text] [Related]
31. A rapid isothermal assay for the detection of Hop stunt viroid in hop plants (Humulus lupulus), and its application in disease surveys. Kappagantu M; Villamor DEV; Bullock JM; Eastwell KC J Virol Methods; 2017 Jul; 245():81-85. PubMed ID: 28392409 [TBL] [Abstract][Full Text] [Related]
32. Transmission studies of the newly described apple chlorotic fruit spot viroid using a combined RT-qPCR and droplet digital PCR approach. Leichtfried T; Reisenzein H; Steinkellner S; Gottsberger RA Arch Virol; 2020 Nov; 165(11):2665-2671. PubMed ID: 32638117 [TBL] [Abstract][Full Text] [Related]
33. Sensitive detection of potato spindle tuber and temperate fruit tree viroids by reverse transcription-polymerase chain reaction-probe capture hybridization. Shamloul AM; Hadidi A J Virol Methods; 1999 Jul; 80(2):145-55. PubMed ID: 10471024 [TBL] [Abstract][Full Text] [Related]
34. Detection of Citrus tristeza virus and Coinfecting Viroids. Saponari M; Zicca S; Loconsole G; Navarro B; Di Serio F Methods Mol Biol; 2019; 2015():67-78. PubMed ID: 31222697 [TBL] [Abstract][Full Text] [Related]
35. Occurrence of citrus viroids in Costa Rica. Villalobos W; Rivera C; Hammond RW Rev Biol Trop; 1997 Sep; 45(3):983-7. PubMed ID: 9611301 [TBL] [Abstract][Full Text] [Related]
36. Citrus viroid V: occurrence, host range, diagnosis, and identification of new variants. Serra P; Eiras M; Bani-Hashemian SM; Murcia N; Kitajima EW; Daròs JA; Flores R; Duran-Vila N Phytopathology; 2008 Nov; 98(11):1199-204. PubMed ID: 18943408 [TBL] [Abstract][Full Text] [Related]
37. A real-time RT-qPCR assay for the detection of Citrus tatter leaf virus. Cowell SJ; Harper SJ; Dawson WO J Virol Methods; 2017 Jun; 244():29-31. PubMed ID: 28274745 [TBL] [Abstract][Full Text] [Related]
38. Specific detection of Malus- and Pyrus-infecting viroids by real-time reverse-transcription quantitative PCR assays. Beaver-Kanuya E; Szostek SA; Harper SJ J Virol Methods; 2022 Feb; 300():114395. PubMed ID: 34861319 [TBL] [Abstract][Full Text] [Related]
39. Citrus exocortis viroid: nucleotide sequence and secondary structure of an Australian isolate. Visvader JE; Gould AR; Bruening GE; Symons RH FEBS Lett; 1982 Jan; 137(2):288-92. PubMed ID: 15768484 [No Abstract] [Full Text] [Related]
40. A multiple RT-PCR assay for simultaneous detection and differentiation of latent viruses and apscarviroids in apple trees. Hao L; Xie J; Chen S; Wang S; Gong Z; Ling KS; Guo L; Fan Z; Zhou T J Virol Methods; 2016 Aug; 234():16-21. PubMed ID: 27054889 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]