BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34649092)

  • 1. Predictive potential of STEAP family for survival, immune microenvironment and therapy response in glioma.
    Zhao Z; Wang Z; Song Z; Wu Y; Jin Q; Zhao Z
    Int Immunopharmacol; 2021 Dec; 101(Pt A):108183. PubMed ID: 34649092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive landscape of STEAP family functions and prognostic prediction value in glioblastoma.
    Chen H; Xu C; Yu Q; Zhong C; Peng Y; Chen J; Chen G
    J Cell Physiol; 2021 Apr; 236(4):2988-3000. PubMed ID: 32964440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel prognostic signature and therapy guidance for hepatocellular carcinoma based on STEAP family.
    Fu D; Zhang X; Zhou Y; Hu S
    BMC Med Genomics; 2024 Jan; 17(1):16. PubMed ID: 38191397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The STEAP protein family: versatile oxidoreductases and targets for cancer immunotherapy with overlapping and distinct cellular functions.
    Grunewald TG; Bach H; Cossarizza A; Matsumoto I
    Biol Cell; 2012 Nov; 104(11):641-57. PubMed ID: 22804687
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Qu S; Liu J; Wang H
    Front Immunol; 2021; 12():648416. PubMed ID: 33889156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Six-transmembrane epithelial antigen of the prostate-1 plays a role for in vivo tumor growth via intercellular communication.
    Yamamoto T; Tamura Y; Kobayashi J; Kamiguchi K; Hirohashi Y; Miyazaki A; Torigoe T; Asanuma H; Hiratsuka H; Sato N
    Exp Cell Res; 2013 Oct; 319(17):2617-26. PubMed ID: 23916873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Six-transmembrane epithelial antigen of the prostate and enhancer of zeste homolog 2 as immunotherapeutic targets for lung cancer.
    Hayashi S; Kumai T; Matsuda Y; Aoki N; Sato K; Kimura S; Kitada M; Tateno M; Celis E; Kobayashi H
    J Transl Med; 2011 Nov; 9():191. PubMed ID: 22053850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immune Infiltrating Cells-Derived Risk Signature Based on Large-scale Analysis Defines Immune Landscape and Predicts Immunotherapy Responses in Glioma Tumor Microenvironment.
    Zhang N; Zhang H; Wang Z; Dai Z; Zhang X; Cheng Q; Liu Z
    Front Immunol; 2021; 12():691811. PubMed ID: 34489938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Six-transmembrane epithelial antigen of the prostate as an immunotherapeutic target for renal cell and bladder cancer.
    Azumi M; Kobayashi H; Aoki N; Sato K; Kimura S; Kakizaki H; Tateno M
    J Urol; 2010 May; 183(5):2036-44. PubMed ID: 20303532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. STEAP proteins: from structure to applications in cancer therapy.
    Gomes IM; Maia CJ; Santos CR
    Mol Cancer Res; 2012 May; 10(5):573-87. PubMed ID: 22522456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The CXCL Family Contributes to Immunosuppressive Microenvironment in Gliomas and Assists in Gliomas Chemotherapy.
    Wang Z; Liu Y; Mo Y; Zhang H; Dai Z; Zhang X; Ye W; Cao H; Liu Z; Cheng Q
    Front Immunol; 2021; 12():731751. PubMed ID: 34603309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of prostate and melanoma tumor cells by six-transmembrane epithelial antigen of prostate-specific helper T lymphocytes in a human leukocyte antigen class II-restricted manner.
    Kobayashi H; Nagato T; Sato K; Aoki N; Kimura S; Murakami M; Iizuka H; Azumi M; Kakizaki H; Tateno M; Celis E
    Cancer Res; 2007 Jun; 67(11):5498-504. PubMed ID: 17545632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia-Related lncRNA Correlates With Prognosis and Immune Microenvironment in Lower-Grade Glioma.
    Xu S; Tang L; Liu Z; Luo C; Cheng Q
    Front Immunol; 2021; 12():731048. PubMed ID: 34659218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zoledronic acid decreases mRNA six-transmembrane epithelial antigen of prostate protein expression in prostate cancer cells.
    Valenti MT; Giannini S; Donatelli L; Realdi G; Lo Cascio V; Dalle Carbonare L
    J Endocrinol Invest; 2010 Apr; 33(4):244-9. PubMed ID: 19915386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monoclonal antibodies to six-transmembrane epithelial antigen of the prostate-1 inhibit intercellular communication in vitro and growth of human tumor xenografts in vivo.
    Challita-Eid PM; Morrison K; Etessami S; An Z; Morrison KJ; Perez-Villar JJ; Raitano AB; Jia XC; Gudas JM; Kanner SB; Jakobovits A
    Cancer Res; 2007 Jun; 67(12):5798-805. PubMed ID: 17575147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishment and validation of five autophagy-related signatures for predicting survival and immune microenvironment in glioma.
    Zhao Z; Wu Y; Wang Z; Xu J; Wang Y; Zhao Z
    Genes Genomics; 2022 Jan; 44(1):79-95. PubMed ID: 34609723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of six-transmembrane epithelial antigen of the prostate-expressing tumor cells by peptide antigen-induced cytotoxic T lymphocytes.
    Rodeberg DA; Nuss RA; Elsawa SF; Celis E
    Clin Cancer Res; 2005 Jun; 11(12):4545-52. PubMed ID: 15958640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunosuppressive Myeloid Cells' Blockade in the Glioma Microenvironment Enhances the Efficacy of Immune-Stimulatory Gene Therapy.
    Kamran N; Kadiyala P; Saxena M; Candolfi M; Li Y; Moreno-Ayala MA; Raja N; Shah D; Lowenstein PR; Castro MG
    Mol Ther; 2017 Jan; 25(1):232-248. PubMed ID: 28129117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryo-electron microscopy structure and potential enzymatic function of human six-transmembrane epithelial antigen of the prostate 1 (STEAP1).
    Oosterheert W; Gros P
    J Biol Chem; 2020 Jul; 295(28):9502-9512. PubMed ID: 32409586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Six-Transmembrane Epithelial Antigen of the Prostate-1 (STEAP-1)-Targeted Ultrasound Imaging Microbubble Improves Detection of Prostate Cancer In Vivo.
    Yuan Y; Liu Y; Zhu XM; Hu J; Zhao CY; Jiang F
    J Ultrasound Med; 2019 Feb; 38(2):299-305. PubMed ID: 30027616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.