These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 34649117)

  • 1. Deep learning can predict lymph node status directly from histology in colorectal cancer.
    Kiehl L; Kuntz S; Höhn J; Jutzi T; Krieghoff-Henning E; Kather JN; Holland-Letz T; Kopp-Schneider A; Chang-Claude J; Brobeil A; von Kalle C; Fröhling S; Alwers E; Brenner H; Hoffmeister M; Brinker TJ
    Eur J Cancer; 2021 Nov; 157():464-473. PubMed ID: 34649117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utility of artificial intelligence with deep learning of hematoxylin and eosin-stained whole slide images to predict lymph node metastasis in T1 colorectal cancer using endoscopically resected specimens; prediction of lymph node metastasis in T1 colorectal cancer.
    Song JH; Hong Y; Kim ER; Kim SH; Sohn I
    J Gastroenterol; 2022 Sep; 57(9):654-666. PubMed ID: 35802259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer.
    Brockmoeller S; Echle A; Ghaffari Laleh N; Eiholm S; Malmstrøm ML; Plato Kuhlmann T; Levic K; Grabsch HI; West NP; Saldanha OL; Kouvidi K; Bono A; Heij LR; Brinker TJ; Gögenür I; Quirke P; Kather JN
    J Pathol; 2022 Mar; 256(3):269-281. PubMed ID: 34738636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Intelligence System to Determine Risk of T1 Colorectal Cancer Metastasis to Lymph Node.
    Kudo SE; Ichimasa K; Villard B; Mori Y; Misawa M; Saito S; Hotta K; Saito Y; Matsuda T; Yamada K; Mitani T; Ohtsuka K; Chino A; Ide D; Imai K; Kishida Y; Nakamura K; Saiki Y; Tanaka M; Hoteya S; Yamashita S; Kinugasa Y; Fukuda M; Kudo T; Miyachi H; Ishida F; Itoh H; Oda M; Mori K
    Gastroenterology; 2021 Mar; 160(4):1075-1084.e2. PubMed ID: 32979355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study.
    Bilal M; Raza SEA; Azam A; Graham S; Ilyas M; Cree IA; Snead D; Minhas F; Rajpoot NM
    Lancet Digit Health; 2021 Dec; 3(12):e763-e772. PubMed ID: 34686474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated curation of large-scale cancer histopathology image datasets using deep learning.
    Hilgers L; Ghaffari Laleh N; West NP; Westwood A; Hewitt KJ; Quirke P; Grabsch HI; Carrero ZI; Matthaei E; Loeffler CML; Brinker TJ; Yuan T; Brenner H; Brobeil A; Hoffmeister M; Kather JN
    Histopathology; 2024 Jun; 84(7):1139-1153. PubMed ID: 38409878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LASSO-Based Machine Learning Algorithm for Prediction of Lymph Node Metastasis in T1 Colorectal Cancer.
    Kang J; Choi YJ; Kim IK; Lee HS; Kim H; Baik SH; Kim NK; Lee KY
    Cancer Res Treat; 2021 Jul; 53(3):773-783. PubMed ID: 33421980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-Assisted Diagnosis of Lymph Node Metastases in Colorectal Cancers Using Transfer Learning With an Ensemble Model.
    Khan A; Brouwer N; Blank A; Müller F; Soldini D; Noske A; Gaus E; Brandt S; Nagtegaal I; Dawson H; Thiran JP; Perren A; Lugli A; Zlobec I
    Mod Pathol; 2023 May; 36(5):100118. PubMed ID: 36805793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of lymph node metastasis in pre-operation cervical cancer patients by weakly supervised deep learning from histopathological whole-slide biopsy images.
    Liu Q; Jiang N; Hao Y; Hao C; Wang W; Bian T; Wang X; Li H; Zhang Y; Kang Y; Xie F; Li Y; Jiang X; Feng Y; Mao Z; Wang Q; Gao Q; Zhang W; Cui B; Dong T
    Cancer Med; 2023 Sep; 12(17):17952-17966. PubMed ID: 37559500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Lymph Node Metastasis From Primary Cervical Squamous Cell Carcinoma Based on Deep Learning in Histopathologic Images.
    Guo Q; Qu L; Zhu J; Li H; Wu Y; Wang S; Yu M; Wu J; Wen H; Ju X; Wang X; Bi R; Shi Y; Wu X
    Mod Pathol; 2023 Dec; 36(12):100316. PubMed ID: 37634868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning approach to predict lymph node metastasis directly from primary tumour histology in prostate cancer.
    Wessels F; Schmitt M; Krieghoff-Henning E; Jutzi T; Worst TS; Waldbillig F; Neuberger M; Maron RC; Steeg M; Gaiser T; Hekler A; Utikal JS; von Kalle C; Fröhling S; Michel MS; Nuhn P; Brinker TJ
    BJU Int; 2021 Sep; 128(3):352-360. PubMed ID: 33706408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorectal cancer lymph node metastasis prediction with weakly supervised transformer-based multi-instance learning.
    Tan L; Li H; Yu J; Zhou H; Wang Z; Niu Z; Li J; Li Z
    Med Biol Eng Comput; 2023 Jun; 61(6):1565-1580. PubMed ID: 36809427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study.
    Kather JN; Krisam J; Charoentong P; Luedde T; Herpel E; Weis CA; Gaiser T; Marx A; Valous NA; Ferber D; Jansen L; Reyes-Aldasoro CC; Zörnig I; Jäger D; Brenner H; Chang-Claude J; Hoffmeister M; Halama N
    PLoS Med; 2019 Jan; 16(1):e1002730. PubMed ID: 30677016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial intelligence for pre-operative lymph node staging in colorectal cancer: a systematic review and meta-analysis.
    Bedrikovetski S; Dudi-Venkata NN; Kroon HM; Seow W; Vather R; Carneiro G; Moore JW; Sammour T
    BMC Cancer; 2021 Sep; 21(1):1058. PubMed ID: 34565338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of lymph node metastasis in early colorectal cancer based on histologic images by artificial intelligence.
    Takamatsu M; Yamamoto N; Kawachi H; Nakano K; Saito S; Fukunaga Y; Takeuchi K
    Sci Rep; 2022 Feb; 12(1):2963. PubMed ID: 35194184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of deep learning-based fully automated classification of microsatellite instability in tissue slides of colorectal cancer.
    Lee SH; Song IH; Jang HJ
    Int J Cancer; 2021 Aug; 149(3):728-740. PubMed ID: 33851412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Lymph Node Metastasis Status from Primary Muscle-Invasive Bladder Cancer Histology Slides Using Deep Learning: A Retrospective Multicenter Study.
    Zheng Q; Jian J; Wang J; Wang K; Fan J; Xu H; Ni X; Yang S; Yuan J; Wu J; Jiao P; Yang R; Chen Z; Liu X; Wang L
    Cancers (Basel); 2023 May; 15(11):. PubMed ID: 37296961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole slide image-based prediction of lymph node metastasis in T1 colorectal cancer using unsupervised artificial intelligence.
    Takashina Y; Kudo SE; Kouyama Y; Ichimasa K; Miyachi H; Mori Y; Kudo T; Maeda Y; Ogawa Y; Hayashi T; Wakamura K; Enami Y; Sawada N; Baba T; Nemoto T; Ishida F; Misawa M
    Dig Endosc; 2023 Nov; 35(7):902-908. PubMed ID: 36905308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning approach to predict sentinel lymph node status directly from routine histology of primary melanoma tumours.
    Brinker TJ; Kiehl L; Schmitt M; Jutzi TB; Krieghoff-Henning EI; Krahl D; Kutzner H; Gholam P; Haferkamp S; Klode J; Schadendorf D; Hekler A; Fröhling S; Kather JN; Haggenmüller S; von Kalle C; Heppt M; Hilke F; Ghoreschi K; Tiemann M; Wehkamp U; Hauschild A; Weichenthal M; Utikal JS
    Eur J Cancer; 2021 Sep; 154():227-234. PubMed ID: 34298373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based pathological prediction of lymph node metastasis for patient with renal cell carcinoma from primary whole slide images.
    Gao F; Jiang L; Guo T; Lin J; Xu W; Yuan L; Han Y; Yang J; Pan Q; Chen E; Zhang N; Chen S; Wang X
    J Transl Med; 2024 Jun; 22(1):568. PubMed ID: 38877591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.