These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34649234)

  • 1. Investigation of optical absorption enhancement of plasmonic configuration by graphene on LiNbO
    Liu K; Lu F; Xu Y; Ma C
    Nanotechnology; 2021 Nov; 33(4):. PubMed ID: 34649234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuneable strong optical absorption in a graphene-insulator-metal hybrid plasmonic device.
    Matthaiakakis N; Yan X; Mizuta H; Charlton MDB
    Sci Rep; 2017 Aug; 7(1):7303. PubMed ID: 28779106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of novel optical and waveguide characteristics for an air-graphene-LiNbO
    Liu K; Lu F; Xu Y; Ma C
    Nanotechnology; 2021 Mar; 32(21):. PubMed ID: 33545706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of propagating graphene plasmons excitation for tunable infrared photonic devices.
    Tang L; Wei W; Wei X; Nong J; Du C; Shi H
    Opt Express; 2018 Feb; 26(3):3709-3722. PubMed ID: 29401898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards Perfect Absorption of Single Layer CVD Graphene in an Optical Resonant Cavity: Challenges and Experimental Achievements.
    Nematpour A; Grilli ML; Lancellotti L; Lisi N
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental near infrared absorption enhancement of graphene layers in an optical resonant cavity.
    Nematpour A; Lisi N; Piegari A; Lancellotti L; Hu G; Grilli ML
    Nanotechnology; 2019 Nov; 30(44):445201. PubMed ID: 31341097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Realization of mid-infrared broadband absorption in monolayer graphene based on strong coupling between graphene nanoribbons and metal tapered grooves.
    Huang L; Hu G; Deng C; Zhu Y; Yun B; Zhang R; Cui Y
    Opt Express; 2018 Oct; 26(22):29192-29202. PubMed ID: 30470085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene Metamaterial Embedded within Bundt Optenna for Ultra-Broadband Infrared Enhanced Absorption.
    Awad E
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35807966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolved Infrared Spectroscopy of Aqueous Molecules Employing Tunable Graphene Plasmons in an Otto Prism.
    Nong J; Wei W; Lan G; Luo P; Guo C; Yi J; Tang L
    Anal Chem; 2020 Dec; 92(23):15370-15378. PubMed ID: 32957772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Absorption Enhancement and Equivalent Resonant Circuit Modeling of Tunable Graphene-Metal Hybrid Antenna.
    Ullah Z; Nawi I; Witjaksono G; Tansu N; Khattak MI; Junaid M; Siddiqui MA; Magsi SA
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32512718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrabroadband, More than One Order Absorption Enhancement in Graphene with Plasmonic Light Trapping.
    Xiong F; Zhang J; Zhu Z; Yuan X; Qin S
    Sci Rep; 2015 Nov; 5():16998. PubMed ID: 26582477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental demonstration of mid-IR absorption enhancement in single layer CVD graphene.
    Nematpour A; Lisi N; Chierchia R; Grilli ML
    Opt Lett; 2020 Jul; 45(14):3861-3864. PubMed ID: 32667304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterned graphene edges for tailored reflection of plasmonic modes.
    Rosolen G; Maes B
    Opt Lett; 2015 Jun; 40(12):2727-30. PubMed ID: 26076247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong Terahertz Absorption of Monolayer Graphene Embedded into a Microcavity.
    Guo X; Xue L; Yang Z; Xu M; Zhu Y; Shao D; Fu Z; Tan Z; Wang C; Cao J; Zhang C
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33562303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous emission in paired graphene plasmonic waveguide structures.
    Zhang L; Fu X; Zhang M; Yang J
    Opt Express; 2013 Apr; 21(7):7897-907. PubMed ID: 23571881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced infrared transmission through gold nanoslit arrays via surface plasmons in continuous graphene.
    Liu Z; Aydin K
    Opt Express; 2016 Nov; 24(24):27882-27889. PubMed ID: 27906356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significantly enhanced infrared absorption of graphene photodetector under surface-plasmonic coupling and polariton interference.
    Zhang Y; Meng D; Li X; Yu H; Lai J; Fan Z; Chen C
    Opt Express; 2018 Nov; 26(23):30862-30872. PubMed ID: 30469978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies.
    Zhang T; Chen L; Wang B; Li X
    Sci Rep; 2015 Jun; 5():11195. PubMed ID: 26057188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband absorption using all-graphene grating-coupled nanoparticles on a reflector.
    Raad SH; Atlasbaf Z; Zapata-Rodríguez CJ
    Sci Rep; 2020 Nov; 10(1):19060. PubMed ID: 33149162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear Terahertz Absorption of Graphene Plasmons.
    Jadidi MM; König-Otto JC; Winnerl S; Sushkov AB; Drew HD; Murphy TE; Mittendorff M
    Nano Lett; 2016 Apr; 16(4):2734-8. PubMed ID: 26978242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.