These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34649269)

  • 1. Cutting mechanism of straight-tooth milling process of titanium alloy TC21 based on simulation and experiment.
    Lei Z; Pei L
    PLoS One; 2021; 16(10):e0258403. PubMed ID: 34649269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of Tool Wear and Chip Morphology in Dry Trochoidal Milling of Titanium Alloy Ti-6Al-4V.
    Liu D; Zhang Y; Luo M; Zhang D
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31208127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Research of Tool Wear Mechanism for High-Speed Milling ADC12 Aluminum Alloy Considering the Cutting Force Effect.
    Meng X; Lin Y; Mi S
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33668143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature Field of Tool Engaged Cutting Zone for Milling of Titanium Alloy with Ball-End Milling.
    Yang S; He C; Zheng M; Wan Q; Zhang Y
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30567371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nickel-Based Alloy Dry Milling Process Induced Material Softening Effect.
    Zha J; Yuan Z; Zhang H; Li Y; Chen Y
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32854361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machinability of experimental Ti-Ag alloys.
    Kikuchi M; Takahashi M; Okuno O
    Dent Mater J; 2008 Mar; 27(2):216-20. PubMed ID: 18540395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machinability evaluation of titanium alloys (Part 2)--Analyses of cutting force and spindle motor current.
    Kikuchi M; Okuno O
    Dent Mater J; 2004 Dec; 23(4):621-7. PubMed ID: 15688729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machinability evaluation of titanium alloys.
    Kikuchi M; Okuno O
    Dent Mater J; 2004 Mar; 23(1):37-45. PubMed ID: 15164923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cutting efficiency of air-turbine burs on cast titanium and dental casting alloys.
    Watanabe I; Ohkubo C; Ford JP; Atsuta M; Okabe T
    Dent Mater; 2000 Nov; 16(6):420-5. PubMed ID: 10967191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study on torsional strength, ductility and fracture characteristics of laser-welded alpha+beta Ti-6Al-7Nb alloy, CP Titanium and Co-Cr alloy dental castings.
    Srimaneepong V; Yoneyama T; Kobayashi E; Doi H; Hanawa T
    Dent Mater; 2008 Jun; 24(6):839-45. PubMed ID: 18054380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the Cutting Performance of Micro Textured Tools on Cutting Ti-6Al-4V Titanium Alloy.
    Zheng K; Yang F; Zhang N; Liu Q; Jiang F
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31991846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutive Model and Cutting Simulation of Titanium Alloy Ti6Al4V after Heat Treatment.
    Qian X; Duan X
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the passivity between cast alloy and laser-welded titanium overdenture bars.
    Paiva J; Givan DA; Broome JC; Lemons JE; McCracken MS
    J Prosthodont; 2009 Dec; 18(8):656-62. PubMed ID: 19682220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large Cutting Depth and Layered Milling of Titanium Alloy Thin-Walled Parts.
    Zha J; Liang J; Li Y; Zhang H; Chen Y
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32218294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [An experimental study on laser-welded dissimilar alloys in dentistry.].
    Huang QF; Zhang JZ; Jiang WD; Li Q; Yu JX
    Shanghai Kou Qiang Yi Xue; 2004 Oct; 13(5):412-5. PubMed ID: 15514869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser and plasma dental soldering techniques applied to Ti-6Al-4V alloy: ultimate tensile strength and finite element analysis.
    Castro MG; Araújo CA; Menegaz GL; Silva JP; Nóbilo MA; Simamoto Júnior PC
    J Prosthet Dent; 2015 May; 113(5):460-6. PubMed ID: 25749079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimisation of the superplastic forming of a dental implant for bone augmentation using finite element simulations.
    Garriga-Majo D; Paterson RJ; Curtis RV; Said R; Wood RD; Bonet J
    Dent Mater; 2004 Jun; 20(5):409-18. PubMed ID: 15081546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Cutting Forces and Geometric Surface Structures in the Milling of NiTi Alloy.
    Kowalczyk M
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38276427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of cutting temperature to evaluate the machinability of titanium alloys.
    Kikuchi M
    Acta Biomater; 2009 Feb; 5(2):770-5. PubMed ID: 18845491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Surface Integrity of Titanium Alloy When Using Micro-Textured Ball-End Milling Cutters.
    Yang S; Yu S; He C
    Micromachines (Basel); 2018 Dec; 10(1):. PubMed ID: 30597972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.