BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 34649426)

  • 1. Development and Advantages of Biodegradable PHA Polymers Based on Electrospun PHBV Fibers for Tissue Engineering and Other Biomedical Applications.
    Kaniuk Ł; Stachewicz U
    ACS Biomater Sci Eng; 2021 Dec; 7(12):5339-5362. PubMed ID: 34649426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyhydroxyalkanoates as biomaterial for electrospun scaffolds.
    Sanhueza C; Acevedo F; Rocha S; Villegas P; Seeger M; Navia R
    Int J Biol Macromol; 2019 Mar; 124():102-110. PubMed ID: 30445089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomedical Applications of the Biopolymer Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Drug Encapsulation and Scaffold Fabrication.
    Rodríguez-Cendal AI; Gómez-Seoane I; de Toro-Santos FJ; Fuentes-Boquete IM; Señarís-Rodríguez J; Díaz-Prado SM
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications.
    Misra SK; Valappil SP; Roy I; Boccaccini AR
    Biomacromolecules; 2006 Aug; 7(8):2249-58. PubMed ID: 16903667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape Memory and Osteogenesis Capabilities of the Electrospun Poly(3-Hydroxybutyrate-
    Wang X; Yan H; Shen Y; Tang H; Yi B; Qin C; Zhang Y
    Tissue Eng Part A; 2021 Jan; 27(1-2):142-152. PubMed ID: 32524903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binary polyhydroxyalkanoate systems for soft tissue engineering.
    Lukasiewicz B; Basnett P; Nigmatullin R; Matharu R; Knowles JC; Roy I
    Acta Biomater; 2018 Apr; 71():225-234. PubMed ID: 29501818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The application of polyhydroxyalkanoates as tissue engineering materials.
    Chen GQ; Wu Q
    Biomaterials; 2005 Nov; 26(33):6565-78. PubMed ID: 15946738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of surfactant types on the biocompatibility of electrospun HAp/PHBV composite nanofibers.
    Suslu A; Albayrak AZ; Urkmez AS; Bayir E; Cocen U
    J Mater Sci Mater Med; 2014 Dec; 25(12):2677-89. PubMed ID: 25091188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds.
    Lim J; You M; Li J; Li Z
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():917-929. PubMed ID: 28629097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PHBV-TiO
    Braga NF; Vital DA; Guerrini LM; Lemes AP; Formaggio DMD; Tada DB; Arantes TM; Cristovan FH
    Biopolymers; 2018 May; 109(5):e23120. PubMed ID: 29704425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and physical properties of polyhydroxyalkanoate (PHA)-based block copolymers: A review.
    Mai J; Kockler K; Parisi E; Chan CM; Pratt S; Laycock B
    Int J Biol Macromol; 2024 Apr; 263(Pt 1):130204. PubMed ID: 38365154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering.
    Dalgic AD; Atila D; Karatas A; Tezcaner A; Keskin D
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():735-746. PubMed ID: 30948111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyhydroxyalkanoate (PHA): applications in drug delivery and tissue engineering.
    Elmowafy E; Abdal-Hay A; Skouras A; Tiboni M; Casettari L; Guarino V
    Expert Rev Med Devices; 2019 Jun; 16(6):467-482. PubMed ID: 31058550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospinning of aligned biodegradable polymer fibers and composite fibers for tissue engineering applications.
    Tong HW; Wang M
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3834-40. PubMed ID: 18047070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Additive Manufacturing of Poly(3-hydroxybutyrate-
    Pecorini G; Braccini S; Parrini G; Chiellini F; Puppi D
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering.
    Gorodzha SN; Muslimov AR; Syromotina DS; Timin AS; Tcvetkov NY; Lepik KV; Petrova AV; Surmeneva MA; Gorin DA; Sukhorukov GB; Surmenev RA
    Colloids Surf B Biointerfaces; 2017 Dec; 160():48-59. PubMed ID: 28917149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabricated polyhydroxyalkanoates blend scaffolds enhance cell viability and cell proliferation.
    Dhania S; Rani R; Kumar R; Thakur R
    J Biotechnol; 2023 Jan; 361():30-40. PubMed ID: 36427593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters.
    Choi SY; Rhie MN; Kim HT; Joo JC; Cho IJ; Son J; Jo SY; Sohn YJ; Baritugo KA; Pyo J; Lee Y; Lee SY; Park SJ
    Metab Eng; 2020 Mar; 58():47-81. PubMed ID: 31145993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyhydroxyalkanoates: Next generation natural biomolecules and a solution for the world's future economy.
    Shahid S; Razzaq S; Farooq R; Nazli ZI
    Int J Biol Macromol; 2021 Jan; 166():297-321. PubMed ID: 33127548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.