These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
880 related articles for article (PubMed ID: 34649572)
1. Generating synthetic CT from low-dose cone-beam CT by using generative adversarial networks for adaptive radiotherapy. Gao L; Xie K; Wu X; Lu Z; Li C; Sun J; Lin T; Sui J; Ni X Radiat Oncol; 2021 Oct; 16(1):202. PubMed ID: 34649572 [TBL] [Abstract][Full Text] [Related]
2. Improving CBCT image quality to the CT level using RegGAN in esophageal cancer adaptive radiotherapy. Wang H; Liu X; Kong L; Huang Y; Chen H; Ma X; Duan Y; Shao Y; Feng A; Shen Z; Gu H; Kong Q; Xu Z; Zhou Y Strahlenther Onkol; 2023 May; 199(5):485-497. PubMed ID: 36688953 [TBL] [Abstract][Full Text] [Related]
3. Streaking artifact reduction for CBCT-based synthetic CT generation in adaptive radiotherapy. Gao L; Xie K; Sun J; Lin T; Sui J; Yang G; Ni X Med Phys; 2023 Feb; 50(2):879-893. PubMed ID: 36183234 [TBL] [Abstract][Full Text] [Related]
4. A cycle generative adversarial network for improving the quality of four-dimensional cone-beam computed tomography images. Usui K; Ogawa K; Goto M; Sakano Y; Kyougoku S; Daida H Radiat Oncol; 2022 Apr; 17(1):69. PubMed ID: 35392947 [TBL] [Abstract][Full Text] [Related]
5. Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy. Liang X; Chen L; Nguyen D; Zhou Z; Gu X; Yang M; Wang J; Jiang S Phys Med Biol; 2019 Jun; 64(12):125002. PubMed ID: 31108465 [TBL] [Abstract][Full Text] [Related]
6. Cone Beam CT (CBCT) Based Synthetic CT Generation Using Deep Learning Methods for Dose Calculation of Nasopharyngeal Carcinoma Radiotherapy. Xue X; Ding Y; Shi J; Hao X; Li X; Li D; Wu Y; An H; Jiang M; Wei W; Wang X Technol Cancer Res Treat; 2021; 20():15330338211062415. PubMed ID: 34851204 [No Abstract] [Full Text] [Related]
7. Improving CBCT quality to CT level using deep learning with generative adversarial network. Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647 [TBL] [Abstract][Full Text] [Related]
8. Comparison and evaluation of different deep learning models of synthetic CT generation from CBCT for nasopharynx cancer adaptive proton therapy. Pang B; Si H; Liu M; Fu W; Zeng Y; Liu H; Cao T; Chang Y; Quan H; Yang Z Med Phys; 2023 Nov; 50(11):6920-6930. PubMed ID: 37800874 [TBL] [Abstract][Full Text] [Related]
9. New technique and application of truncated CBCT processing in adaptive radiotherapy for breast cancer. Xie K; Gao L; Xi Q; Zhang H; Zhang S; Zhang F; Sun J; Lin T; Sui J; Ni X Comput Methods Programs Biomed; 2023 Apr; 231():107393. PubMed ID: 36739623 [TBL] [Abstract][Full Text] [Related]
10. CBCT-based synthetic CT generated using CycleGAN with HU correction for adaptive radiotherapy of nasopharyngeal carcinoma. Jihong C; Kerun Q; Kaiqiang C; Xiuchun Z; Yimin Z; Penggang B Sci Rep; 2023 Apr; 13(1):6624. PubMed ID: 37095147 [TBL] [Abstract][Full Text] [Related]
11. Compensation cycle consistent generative adversarial networks (Comp-GAN) for synthetic CT generation from MR scans with truncated anatomy. Zhao Y; Wang H; Yu C; Court LE; Wang X; Wang Q; Pan T; Ding Y; Phan J; Yang J Med Phys; 2023 Jul; 50(7):4399-4414. PubMed ID: 36698291 [TBL] [Abstract][Full Text] [Related]
12. Generation of abdominal synthetic CTs from 0.35T MR images using generative adversarial networks for MR-only liver radiotherapy. Fu J; Singhrao K; Cao M; Yu V; Santhanam AP; Yang Y; Guo M; Raldow AC; Ruan D; Lewis JH Biomed Phys Eng Express; 2020 Jan; 6(1):015033. PubMed ID: 33438621 [TBL] [Abstract][Full Text] [Related]
13. Cone beam CT for QA of synthetic CT in MRI only for prostate patients. Palmér E; Persson E; Ambolt P; Gustafsson C; Gunnlaugsson A; Olsson LE J Appl Clin Med Phys; 2018 Nov; 19(6):44-52. PubMed ID: 30182461 [TBL] [Abstract][Full Text] [Related]
14. A 4D-CBCT correction network based on contrastive learning for dose calculation in lung cancer. Cao N; Wang Z; Ding J; Zhang H; Zhang S; Gao L; Sun J; Xie K; Ni X Radiat Oncol; 2024 Feb; 19(1):20. PubMed ID: 38336759 [TBL] [Abstract][Full Text] [Related]
15. CBCT-Based synthetic CT image generation using conditional denoising diffusion probabilistic model. Peng J; Qiu RLJ; Wynne JF; Chang CW; Pan S; Wang T; Roper J; Liu T; Patel PR; Yu DS; Yang X Med Phys; 2024 Mar; 51(3):1847-1859. PubMed ID: 37646491 [TBL] [Abstract][Full Text] [Related]
16. Generating synthesized computed tomography from CBCT using a conditional generative adversarial network for head and neck cancer patients. Zhang Y; Ding SG; Gong XC; Yuan XX; Lin JF; Chen Q; Li JG Technol Cancer Res Treat; 2022; 21():15330338221085358. PubMed ID: 35262422 [No Abstract] [Full Text] [Related]
17. Multiresolution residual deep neural network for improving pelvic CBCT image quality. Wu W; Qu J; Cai J; Yang R Med Phys; 2022 Mar; 49(3):1522-1534. PubMed ID: 35034367 [TBL] [Abstract][Full Text] [Related]
18. Cone-beam CT-derived relative stopping power map generation via deep learning for proton radiotherapy. Harms J; Lei Y; Wang T; McDonald M; Ghavidel B; Stokes W; Curran WJ; Zhou J; Liu T; Yang X Med Phys; 2020 Sep; 47(9):4416-4427. PubMed ID: 32579710 [TBL] [Abstract][Full Text] [Related]
19. A preliminary study of using a deep convolution neural network to generate synthesized CT images based on CBCT for adaptive radiotherapy of nasopharyngeal carcinoma. Li Y; Zhu J; Liu Z; Teng J; Xie Q; Zhang L; Liu X; Shi J; Chen L Phys Med Biol; 2019 Jul; 64(14):145010. PubMed ID: 31170699 [TBL] [Abstract][Full Text] [Related]
20. Head and neck synthetic CT generated from ultra-low-dose cone-beam CT following Image Gently Protocol using deep neural network. Yuan N; Rao S; Chen Q; Sensoy L; Qi J; Rong Y Med Phys; 2022 May; 49(5):3263-3277. PubMed ID: 35229904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]