BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34649671)

  • 1. Environmental implications of the organic matter structure for white-rot fungus Pleurotus eryngii growth in a tropical climate.
    Louzada Dos Santos T; Huertas Tavares OC; de Abreu Lopes S; Elias SS; Louro Berbara RL; García AC
    Fungal Biol; 2021 Nov; 125(11):845-859. PubMed ID: 34649671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of brassica haulms by white rot fungus Pleurotus eryngii.
    Singh MP; Pandey VK; Srivastava AK; Viswakarma SK
    Cell Mol Biol (Noisy-le-grand); 2011 Feb; 57(1):47-55. PubMed ID: 21366962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free comparative proteomic analysis of Pleurotus eryngii grown on sawdust, bagasse, and peanut shell substrates.
    Li Z; Zhao C; Zhou Y; Zheng S; Hu Q; Zou Y
    J Proteomics; 2024 Mar; 294():105074. PubMed ID: 38199305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Different Substrates on Lignocellulosic Enzyme Expression, Enzyme Activity, Substrate Utilization and Biological Efficiency of Pleurotus Eryngii.
    Xie C; Yan L; Gong W; Zhu Z; Tan S; Chen D; Hu Z; Peng Y
    Cell Physiol Biochem; 2016; 39(4):1479-94. PubMed ID: 27607466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secretome analysis of Pleurotus eryngii reveals enzymatic composition for ramie stalk degradation.
    Xie C; Luo W; Li Z; Yan L; Zhu Z; Wang J; Hu Z; Peng Y
    Electrophoresis; 2016 Jan; 37(2):310-20. PubMed ID: 26525014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of naphthalene metabolism by white rot fungus Pleurotus eryngii.
    Hadibarata T; Teh ZC; Rubiyatno ; Zubir MM; Khudhair AB; Yusoff AR; Salim MR; Hidayat T
    Bioprocess Biosyst Eng; 2013 Oct; 36(10):1455-61. PubMed ID: 23334282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative secretome of white-rot fungi reveals co-regulated carbohydrate-active enzymes associated with selective ligninolysis of ramie stalks.
    Xie C; Gong W; Zhu Z; Zhou Y; Xu C; Yan L; Hu Z; Ai L; Peng Y
    Microb Biotechnol; 2021 May; 14(3):911-922. PubMed ID: 32798284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid detection method of Pleurotus eryngii mycelium based on near infrared spectral characteristics.
    Yang C; Ma X; Guan H; Fan B
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 271():120919. PubMed ID: 35091183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review.
    van Kuijk SJA; Sonnenberg ASM; Baars JJP; Hendriks WH; Cone JW
    Biotechnol Adv; 2015; 33(1):191-202. PubMed ID: 25447421
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Purnomo AS; Maulianawati D; Kamei I
    J Microbiol Biotechnol; 2019 Sep; 29(9):1424-1433. PubMed ID: 31474097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The genome of Pleurotus eryngii provides insights into the mechanisms of wood decay.
    Yang RH; Li Y; Wáng Y; Wan JN; Zhou CL; Wāng Y; Gao YN; Mao WJ; Tang LH; Gong M; Wu YY; Bao DP
    J Biotechnol; 2016 Dec; 239():65-67. PubMed ID: 27737781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Biotransformation of lignocellulse by the fungi Pleurotus floridae (Fries) Kummer and Phellinus igniarius (Linnearus:Fries) Quelet--the pathogens of white rot in trees].
    Dombrovs'ka OM; Kostyshyn SS
    Ukr Biokhim Zh (1978); 1998; 70(1):68-74. PubMed ID: 9848143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cloning of a new peroxidase found in lignocellulose cultures of Pleurotus eryngii and sequence comparison with other fungal peroxidases.
    Camarero S; Ruiz-Dueñas FJ; Sarkar S; Martínez MJ; Martínez AT
    FEMS Microbiol Lett; 2000 Oct; 191(1):37-43. PubMed ID: 11004397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The remediation of sulfonamides from the environment by Pleurotus eryngii mycelium. Efficiency, products and mechanisms of mycodegradation.
    Baran W; Adamek E; Włodarczyk A; Lazur J; Opoka W; Muszyńska B
    Chemosphere; 2021 Jan; 262():128026. PubMed ID: 33182090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Lytic Polysaccharide Monooxygenase from a White-Rot Fungus Drives the Degradation of Lignin by a Versatile Peroxidase.
    Li F; Ma F; Zhao H; Zhang S; Wang L; Zhang X; Yu H
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selenium and Zinc Biofortification of
    Zięba P; Kała K; Włodarczyk A; Szewczyk A; Kunicki E; Sękara A; Muszyńska B
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32079328
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of pex1 disruption on wood lignin biodegradation, fruiting development and the utilization of carbon sources in the white-rot Agaricomycete Pleurotus ostreatus and non-wood decaying Coprinopsis cinerea.
    Nakazawa T; Izuno A; Horii M; Kodera R; Nishimura H; Hirayama Y; Tsunematsu Y; Miyazaki Y; Awano T; Muraguchi H; Watanabe K; Sakamoto M; Takabe K; Watanabe T; Isagi Y; Honda Y
    Fungal Genet Biol; 2017 Dec; 109():7-15. PubMed ID: 29030267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional shifts in delignification-defective mutants of the white-rot fungus Pleurotus ostreatus.
    Wu H; Nakazawa T; Takenaka A; Kodera R; Morimoto R; Sakamoto M; Honda Y
    FEBS Lett; 2020 Oct; 594(19):3182-3199. PubMed ID: 32697375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-potency white-rot fungal strains and duration of fermentation to optimize corn straw as ruminant feed.
    Zhao X; Wang F; Fang Y; Zhou D; Wang S; Wu D; Wang L; Zhong R
    Bioresour Technol; 2020 Sep; 312():123512. PubMed ID: 32473472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential Proteomic Profiles of
    Xiao Q; Ma F; Li Y; Yu H; Li C; Zhang X
    Front Microbiol; 2017; 8():480. PubMed ID: 28386251
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.