These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 34649692)
1. Improvements in xylose stability and thermalstability of GH39 β-xylosidase from Dictyoglomus thermophilum by site-directed mutagenesis and insights into its xylose tolerance mechanism. Li Q; Tong X; Jiang Y; Li D; Zhao L Enzyme Microb Technol; 2021 Nov; 151():109921. PubMed ID: 34649692 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a novel thermostable and xylose-tolerant GH 39 β-xylosidase from Dictyoglomus thermophilum. Li Q; Wu T; Qi Z; Zhao L; Pei J; Tang F BMC Biotechnol; 2018 May; 18(1):29. PubMed ID: 29783967 [TBL] [Abstract][Full Text] [Related]
3. Highly Efficient Biotransformation of Astragaloside IV to Cycloastragenol by Sugar-Stimulated β-Glucosidase and β-Xylosidase from Li Q; Wu T; Zhao L; Pei J; Wang Z; Xiao W J Microbiol Biotechnol; 2019 Dec; 29(12):1882-1893. PubMed ID: 30176709 [TBL] [Abstract][Full Text] [Related]
4. Characterization of a highly xylose tolerant β-xylosidase isolated from high temperature horse manure compost. Ndata K; Nevondo W; Cekuse B; van Zyl LJ; Trindade M BMC Biotechnol; 2021 Oct; 21(1):61. PubMed ID: 34689773 [TBL] [Abstract][Full Text] [Related]
5. Highly Efficient Biotransformation of Notoginsenoside R1 into Ginsenoside Rg1 by Li Q; Wang L; Fang X; Zhao L J Microbiol Biotechnol; 2022 Apr; 32(4):447-457. PubMed ID: 35131955 [TBL] [Abstract][Full Text] [Related]
7. Co-production of Xylooligosaccharides and Xylose From Poplar Sawdust by Recombinant Endo-1,4-β-Xylanase and β-Xylosidase Mixture Hydrolysis. Li Q; Jiang Y; Tong X; Zhao L; Pei J Front Bioeng Biotechnol; 2020; 8():637397. PubMed ID: 33598452 [TBL] [Abstract][Full Text] [Related]
8. Cloning and characterization of the β-xylosidase from Dictyoglomus turgidum for high efficient biotransformation of 10-deacetyl-7-xylosltaxol. Li Q; Jiang Y; Tong X; Pei J; Xiao W; Wang Z; Zhao L Bioorg Chem; 2020 Jan; 94():103357. PubMed ID: 31668798 [TBL] [Abstract][Full Text] [Related]
9. Purification and biochemical properties of a thermostable xylose-tolerant beta- D-xylosidase from Scytalidium thermophilum. Zanoelo FF; Polizeli Md Mde L; Terenzi HF; Jorge JA J Ind Microbiol Biotechnol; 2004 May; 31(4):170-6. PubMed ID: 15160297 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous Improvement of Final Product-Tolerance and Thermostability of GH39 Xylosidase for Prebiotic Production by Directed Evolution. Zhang Z; Zhang Z; Yu Z; Chen S; Zhang M; Zhang T; Luo X; Zhao J; Li Z Foods; 2022 Sep; 11(19):. PubMed ID: 36230114 [TBL] [Abstract][Full Text] [Related]
11. Enzyme-substrate complex structures of a GH39 beta-xylosidase from Geobacillus stearothermophilus. Czjzek M; Ben David A; Bravman T; Shoham G; Henrissat B; Shoham Y J Mol Biol; 2005 Nov; 353(4):838-46. PubMed ID: 16212978 [TBL] [Abstract][Full Text] [Related]
12. Production and Characteristics of a Novel Xylose- and Alkali-tolerant GH 43 β-xylosidase from Penicillium oxalicum for Promoting Hemicellulose Degradation. Ye Y; Li X; Zhao J Sci Rep; 2017 Sep; 7(1):11600. PubMed ID: 28912429 [TBL] [Abstract][Full Text] [Related]
13. [Expression of β-xylosidase Li L; Peng C; Yu K; Tang Y; Lin Y; Li L; Ni H; Li Q Sheng Wu Gong Cheng Xue Bao; 2023 Nov; 39(11):4593-4607. PubMed ID: 38013186 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of Dictyoglomus thermophilum β-d-xylosidase DtXyl unravels the structural determinants for efficient notoginsenoside R1 hydrolysis. Bretagne D; Pâris A; de Vaumas R; Lafite P; Daniellou R Biochimie; 2021 Feb; 181():34-41. PubMed ID: 33242495 [TBL] [Abstract][Full Text] [Related]
15. Biochemical characterization of a xylose-tolerant GH43 β-xylosidase from Geobacillus thermodenitrificans. Melo VS; Gomes BM; Chambergo FS Carbohydr Res; 2023 Oct; 532():108901. PubMed ID: 37487384 [TBL] [Abstract][Full Text] [Related]
16. Critical Roles of Acidic Residues in Loop Regions of the Structural Surface for the Salt Tolerance of a GH39 β-d-Xylosidase. Cao L; Lin M; Ning J; Meng X; Pu X; Zhang R; Wu Q; Huang Z; Zhou J J Agric Food Chem; 2024 Mar; 72(11):5805-5815. PubMed ID: 38451212 [TBL] [Abstract][Full Text] [Related]
17. Characterization of a recombinant xylose tolerant β-xylosidase from Humicola grisea var. thermoidea and its use in sugarcane bagasse hydrolysis. Cintra LC; Fernandes AG; Oliveira ICM; Siqueira SJL; Costa IGO; Colussi F; Jesuíno RSA; Ulhoa CJ; Faria FP Int J Biol Macromol; 2017 Dec; 105(Pt 1):262-271. PubMed ID: 28693992 [TBL] [Abstract][Full Text] [Related]
18. Structure-based protein engineering of bacterial β-xylosidase to increase the production yield of xylobiose from xylose. Hong S; Kyung M; Jo I; Kim YR; Ha NC Biochem Biophys Res Commun; 2018 Jun; 501(3):703-710. PubMed ID: 29752942 [TBL] [Abstract][Full Text] [Related]
19. High level expression of a novel family 3 neutral β-xylosidase from Humicola insolens Y1 with high tolerance to D-xylose. Xia W; Shi P; Xu X; Qian L; Cui Y; Xia M; Yao B PLoS One; 2015; 10(2):e0117578. PubMed ID: 25658646 [TBL] [Abstract][Full Text] [Related]
20. Engineering lower inhibitor affinities in β-D-xylosidase of Selenomonas ruminantium by site-directed mutagenesis of Trp145. Jordan DB; Wagschal K; Fan Z; Yuan L; Braker JD; Heng C J Ind Microbiol Biotechnol; 2011 Nov; 38(11):1821-35. PubMed ID: 21528413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]