BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34650076)

  • 1. Generating synthetic contrast enhancement from non-contrast chest computed tomography using a generative adversarial network.
    Choi JW; Cho YJ; Ha JY; Lee SB; Lee S; Choi YH; Cheon JE; Kim WS
    Sci Rep; 2021 Oct; 11(1):20403. PubMed ID: 34650076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NCCT-CECT image synthesizers and their application to pulmonary vessel segmentation.
    Pang H; Qi S; Wu Y; Wang M; Li C; Sun Y; Qian W; Tang G; Xu J; Liang Z; Chen R
    Comput Methods Programs Biomed; 2023 Apr; 231():107389. PubMed ID: 36739625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic contrast-enhanced computed tomography generation using a deep convolutional neural network for cardiac substructure delineation in breast cancer radiation therapy: a feasibility study.
    Chun J; Chang JS; Oh C; Park I; Choi MS; Hong CS; Kim H; Yang G; Moon JY; Chung SY; Suh YJ; Kim JS
    Radiat Oncol; 2022 Apr; 17(1):83. PubMed ID: 35459221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The image quality of deep-learning image reconstruction of chest CT images on a mediastinal window setting.
    Hata A; Yanagawa M; Yoshida Y; Miyata T; Kikuchi N; Honda O; Tomiyama N
    Clin Radiol; 2021 Feb; 76(2):155.e15-155.e23. PubMed ID: 33220941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsupervised Deep Learning for Stroke Lesion Segmentation on Follow-up CT Based on Generative Adversarial Networks.
    van Voorst H; Konduri PR; van Poppel LM; van der Steen W; van der Sluijs PM; Slot EMH; Emmer BJ; van Zwam WH; Roos YBWEM; Majoie CBLM; Zaharchuk G; Caan MWA; Marquering HA; ;
    AJNR Am J Neuroradiol; 2022 Aug; 43(8):1107-1114. PubMed ID: 35902122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving CBCT quality to CT level using deep learning with generative adversarial network.
    Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K
    Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy.
    Olberg S; Zhang H; Kennedy WR; Chun J; Rodriguez V; Zoberi I; Thomas MA; Kim JS; Mutic S; Green OL; Park JC
    Med Phys; 2019 Sep; 46(9):4135-4147. PubMed ID: 31309586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving image quality with model-based iterative reconstruction algorithm for chest CT in children with reduced contrast concentration.
    Sun J; Hu D; Shen Y; Yang H; Chen C; Yin J; Peng Y
    Radiol Med; 2019 Jul; 124(7):595-601. PubMed ID: 30739289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image denoising by transfer learning of generative adversarial network for dental CT.
    Hegazy MAA; Cho MH; Lee SY
    Biomed Phys Eng Express; 2020 Sep; 6(5):055024. PubMed ID: 33444255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of Deep-Learning Image Reconstruction for Low-Dose Chest Computed Tomography Scan: Emphasis on Image Quality and Noise.
    Kim JH; Yoon HJ; Lee E; Kim I; Cha YK; Bak SH
    Korean J Radiol; 2021 Jan; 22(1):131-138. PubMed ID: 32729277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT.
    Gong H; Yu L; Leng S; Dilger SK; Ren L; Zhou W; Fletcher JG; McCollough CH
    Med Phys; 2019 May; 46(5):2052-2063. PubMed ID: 30889282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining low tube voltage and iterative reconstruction for contrast-enhanced CT imaging of the chest-initial clinical experience.
    Li Q; Yu H; Zhang L; Fan L; Liu SY
    Clin Radiol; 2013 May; 68(5):e249-53. PubMed ID: 23428340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the Quality of Synthetic FLAIR Images with Deep Learning Using a Conditional Generative Adversarial Network for Pixel-by-Pixel Image Translation.
    Hagiwara A; Otsuka Y; Hori M; Tachibana Y; Yokoyama K; Fujita S; Andica C; Kamagata K; Irie R; Koshino S; Maekawa T; Chougar L; Wada A; Takemura MY; Hattori N; Aoki S
    AJNR Am J Neuroradiol; 2019 Feb; 40(2):224-230. PubMed ID: 30630834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT.
    Bruns S; Wolterink JM; Takx RAP; van Hamersvelt RW; Suchá D; Viergever MA; Leiner T; Išgum I
    Med Phys; 2020 Oct; 47(10):5048-5060. PubMed ID: 32786071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of mediastinal and hilar lymph nodes by 16-row MDCT: is contrast material needed?
    Takahashi M; Nitta N; Takazakura R; Nagatani Y; Ushio N; Murata K
    Eur J Radiol; 2008 May; 66(2):287-91. PubMed ID: 17628379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-energy CT in the assessment of mediastinal lymph nodes: comparative study of virtual non-contrast and true non-contrast images.
    Yoo SY; Kim Y; Cho HH; Choi MJ; Shim SS; Lee JK; Baek SY
    Korean J Radiol; 2013; 14(3):532-9. PubMed ID: 23690725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. United multi-task learning for abdominal contrast-enhanced CT synthesis through joint deformable registration.
    Zhong L; Huang P; Shu H; Li Y; Zhang Y; Feng Q; Wu Y; Yang W
    Comput Methods Programs Biomed; 2023 Apr; 231():107391. PubMed ID: 36804266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image quality evaluation of dual-layer spectral detector CT of the chest and comparison with conventional CT imaging.
    Doerner J; Hauger M; Hickethier T; Byrtus J; Wybranski C; Große Hokamp N; Maintz D; Haneder S
    Eur J Radiol; 2017 Aug; 93():52-58. PubMed ID: 28668431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation Dose Comparison Between 70 kVp and 100 kVp With Spectral Beam Shaping for Non-Contrast-Enhanced Pediatric Chest Computed Tomography: A Prospective Randomized Controlled Study.
    Weis M; Henzler T; Nance JW; Haubenreisser H; Meyer M; Sudarski S; Schoenberg SO; Neff KW; Hagelstein C
    Invest Radiol; 2017 Mar; 52(3):155-162. PubMed ID: 27662576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporally downsampled cerebral CT perfusion image restoration using deep residual learning.
    Zhu H; Tong D; Zhang L; Wang S; Wu W; Tang H; Chen Y; Luo L; Zhu J; Li B
    Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):193-201. PubMed ID: 31673961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.