These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 34650554)

  • 21. Dynamics of Cryptococcus neoformans-macrophage interactions reveal that fungal background influences outcome during cryptococcal meningoencephalitis in humans.
    Alanio A; Desnos-Ollivier M; Dromer F
    mBio; 2011; 2(4):. PubMed ID: 21828220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interleukin-17 is not required for classical macrophage activation in a pulmonary mouse model of Cryptococcus neoformans infection.
    Hardison SE; Wozniak KL; Kolls JK; Wormley FL
    Infect Immun; 2010 Dec; 78(12):5341-51. PubMed ID: 20921149
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detrimental impact of the IL-33/ST2 axis in an animal infection model with Cryptococcus neoformans.
    Ueno K; Miyazaki Y
    Allergol Int; 2023 Oct; 72(4):530-536. PubMed ID: 37482531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptional Profiling of Patient Isolates Identifies a Novel TOR/Starvation Regulatory Pathway in Cryptococcal Virulence.
    Park YD; Jarvis JN; Hu G; Davis SE; Qiu J; Zhang N; Hollingsworth C; Loyse A; Gardina PJ; Valyi-Nagy T; Myers TG; Harrison TS; Bicanic T; Williamson PR
    mBio; 2018 Dec; 9(6):. PubMed ID: 30563896
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced innate immune responsiveness to pulmonary Cryptococcus neoformans infection is associated with resistance to progressive infection.
    Guillot L; Carroll SF; Homer R; Qureshi ST
    Infect Immun; 2008 Oct; 76(10):4745-56. PubMed ID: 18678664
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TNF-α-Producing
    Fa Z; Xu J; Yi J; Sang J; Pan W; Xie Q; Yang R; Fang W; Liao W; Olszewski MA
    Front Immunol; 2019; 10():1725. PubMed ID: 31404168
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The F-Box Protein Fbp1 Shapes the Immunogenic Potential of
    Masso-Silva J; Espinosa V; Liu TB; Wang Y; Xue C; Rivera A
    mBio; 2018 Jan; 9(1):. PubMed ID: 29317510
    [No Abstract]   [Full Text] [Related]  

  • 28. Phagocytic activity and monocyte chemotactic protein expression by pulmonary macrophages in persistent pulmonary cryptococcosis.
    He W; Casadevall A; Lee SC; Goldman DL
    Infect Immun; 2003 Feb; 71(2):930-6. PubMed ID: 12540575
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of extracellular phospholipases and mononuclear phagocytes in dissemination of cryptococcosis in a murine model.
    Santangelo R; Zoellner H; Sorrell T; Wilson C; Donald C; Djordjevic J; Shounan Y; Wright L
    Infect Immun; 2004 Apr; 72(4):2229-39. PubMed ID: 15039347
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DAP12 Inhibits Pulmonary Immune Responses to Cryptococcus neoformans.
    Heung LJ; Hohl TM
    Infect Immun; 2016 Jun; 84(6):1879-86. PubMed ID: 27068093
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Early Innate Immune Response to, and Phagocyte-Dependent Entry of, Cryptococcus neoformans Map to the Perivascular Space of Cortical Post-Capillary Venules in Neurocryptococcosis.
    Kaufman-Francis K; Djordjevic JT; Juillard PG; Lev S; Desmarini D; Grau GER; Sorrell TC
    Am J Pathol; 2018 Jul; 188(7):1653-1665. PubMed ID: 29929915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection.
    Davis MJ; Tsang TM; Qiu Y; Dayrit JK; Freij JB; Huffnagle GB; Olszewski MA
    mBio; 2013 Jun; 4(3):e00264-13. PubMed ID: 23781069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Cnes2 locus on mouse chromosome 17 regulates host defense against cryptococcal infection through pleiotropic effects on host immunity.
    Shourian M; Flaczyk A; Angers I; Mindt BC; Fritz JH; Qureshi ST
    Infect Immun; 2015 Dec; 83(12):4541-54. PubMed ID: 26371125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of protective inflammation and cell-mediated immunity against Cryptococcus neoformans after exposure to hyphal mutants.
    Zhai B; Wozniak KL; Masso-Silva J; Upadhyay S; Hole C; Rivera A; Wormley FL; Lin X
    mBio; 2015 Oct; 6(5):e01433-15. PubMed ID: 26443458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cryptococcus neoformans
    Zhang L; Zhang K; Li H; Coelho C; de Souza Gonçalves D; Fu MS; Li X; Nakayasu ES; Kim YM; Liao W; Pan W; Casadevall A
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785616
    [No Abstract]   [Full Text] [Related]  

  • 36. STAT1 signaling is essential for protection against Cryptococcus neoformans infection in mice.
    Leopold Wager CM; Hole CR; Wozniak KL; Olszewski MA; Wormley FL
    J Immunol; 2014 Oct; 193(8):4060-71. PubMed ID: 25200956
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Live Imaging of Host-Parasite Interactions in a Zebrafish Infection Model Reveals Cryptococcal Determinants of Virulence and Central Nervous System Invasion.
    Tenor JL; Oehlers SH; Yang JL; Tobin DM; Perfect JR
    mBio; 2015 Sep; 6(5):e01425-15. PubMed ID: 26419880
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antibody efficacy in murine pulmonary Cryptococcus neoformans infection: a role for nitric oxide.
    Rivera J; Mukherjee J; Weiss LM; Casadevall A
    J Immunol; 2002 Apr; 168(7):3419-27. PubMed ID: 11907100
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Innate host defenses against Cryptococcus neoformans.
    Hole C; Wormley FL
    J Microbiol; 2016 Mar; 54(3):202-11. PubMed ID: 26920880
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cdk8 and Ssn801 Regulate Oxidative Stress Resistance and Virulence in Cryptococcus neoformans.
    Chang AL; Kang Y; Doering TL
    mBio; 2019 Feb; 10(1):. PubMed ID: 30755515
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.