These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 34650901)

  • 1. Criteria ruling particle agglomeration.
    Vollath D
    Beilstein J Nanotechnol; 2021; 12():1093-1100. PubMed ID: 34650901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agglomerates of nanoparticles.
    Vollath D
    Beilstein J Nanotechnol; 2020; 11():854-857. PubMed ID: 32551210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Entropy in Nanoparticle Agglomeration.
    Kätelhön E; Sokolov SV; Bartlett TR; Compton RG
    Chemphyschem; 2017 Jan; 18(1):51-54. PubMed ID: 27865051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation of structure and nanoscale interactions in polymer nanocomposites.
    Zhang Q; Archer LA
    J Chem Phys; 2004 Dec; 121(21):10814-24. PubMed ID: 15549968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo Aggregation Code (MCAC) Part 2: Application to soot agglomeration, highlighting the importance of primary particles.
    Morán J; Yon J; Poux A; Corbin F; Ouf FX; Siméon A
    J Colloid Interface Sci; 2020 Sep; 575():274-285. PubMed ID: 32380319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agglomeration of oppositely charged particles in nonpolar liquids.
    Werth JH; Knudsen H; Hinrichsen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021402. PubMed ID: 16605334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards a better understanding on agglomeration mechanisms and thermodynamic properties of TiO₂ nanoparticles interacting with natural organic matter.
    Loosli F; Vitorazi L; Berret JF; Stoll S
    Water Res; 2015 Sep; 80():139-48. PubMed ID: 26001280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colloidal Stability of Apolar Nanoparticles: The Role of Particle Size and Ligand Shell Structure.
    Kister T; Monego D; Mulvaney P; Widmer-Cooper A; Kraus T
    ACS Nano; 2018 Jun; 12(6):5969-5977. PubMed ID: 29842786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new stochastic approach for the simulation of agglomeration between colloidal particles.
    Henry C; Minier JP; Pozorski J; Lefèvre G
    Langmuir; 2013 Nov; 29(45):13694-707. PubMed ID: 24111685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculation of proteins' total side-chain torsional entropy and its influence on protein-ligand interactions.
    DuBay KH; Geissler PL
    J Mol Biol; 2009 Aug; 391(2):484-97. PubMed ID: 19481551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light scattering by densely packed optically soft particle systems, with consideration of the particle agglomeration and dependent scattering.
    Ma LX; Wang CC; Tan JY
    Appl Opt; 2019 Sep; 58(27):7336-7345. PubMed ID: 31674380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number Monte Carlo simulation.
    Liu HH; Surawanvijit S; Rallo R; Orkoulas G; Cohen Y
    Environ Sci Technol; 2011 Nov; 45(21):9284-92. PubMed ID: 21916459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo Aggregation Code (MCAC) Part 1: Fundamentals.
    Morán J; Yon J; Poux A
    J Colloid Interface Sci; 2020 Jun; 569():184-194. PubMed ID: 32109672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavior of the Enthalpy of Adsorption in Nanoporous Materials Close to Saturation Conditions.
    Torres-Knoop A; Poursaeidesfahani A; Vlugt TJH; Dubbeldam D
    J Chem Theory Comput; 2017 Jul; 13(7):3326-3339. PubMed ID: 28521093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal particle deposition on microchannel walls, for attractive and repulsive surface potentials.
    Porto Santos T; Cunha RL; Tabeling P; Cejas CM
    Phys Chem Chem Phys; 2020 Aug; 22(30):17236-17246. PubMed ID: 32685946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of surfactant molecules in magnetic fluid: comparison of Monte Carlo simulation and electron magnetic resonance.
    Castro LL; Gonçalves GR; Neto KS; Morais PC; Bakuzis AF; Miotto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061507. PubMed ID: 19256846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lattice theory of competitive binding: Influence of van der Waals interactions on molecular binding and adsorption to a solid substrate from binary liquid mixtures.
    Dudowicz J; Douglas JF; Freed KF
    J Chem Phys; 2018 Jul; 149(4):044704. PubMed ID: 30068175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ investigation of temperature induced agglomeration in non-polar magnetic nanoparticle dispersions by small angle X-ray scattering.
    Appel C; Kuttich B; Kraus T; Stühn B
    Nanoscale; 2021 Apr; 13(14):6916-6920. PubMed ID: 33885492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system.
    Skebo JE; Grabinski CM; Schrand AM; Schlager JJ; Hussain SM
    Int J Toxicol; 2007; 26(2):135-41. PubMed ID: 17454253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size Dependence of the Integral Melting Enthalpy and Entropy of Nanoparticles.
    Wang Y; Xue YQ; Fu QS
    J Nanosci Nanotechnol; 2020 Feb; 20(2):934-940. PubMed ID: 31383089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.