These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34651085)

  • 1. Enzyme engineering and
    Wang J; Anderson K; Yang E; He L; Lidstrom ME
    Synth Biol (Oxf); 2021; 6(1):ysab020. PubMed ID: 34651085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formate Assimilation: The Metabolic Architecture of Natural and Synthetic Pathways.
    Bar-Even A
    Biochemistry; 2016 Jul; 55(28):3851-63. PubMed ID: 27348189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paving the way for synthetic C1 - Metabolism in Pseudomonas putida through the reductive glycine pathway.
    Bruinsma L; Wenk S; Claassens NJ; Martins Dos Santos VAP
    Metab Eng; 2023 Mar; 76():215-224. PubMed ID: 36804222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent progress in metabolic engineering of microbial formate assimilation.
    Mao W; Yuan Q; Qi H; Wang Z; Ma H; Chen T
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):6905-6917. PubMed ID: 32566995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic Methanol and Formate Assimilation Via Modular Engineering and Selection Strategies.
    Claassens NJ; He H; Bar-Even A
    Curr Issues Mol Biol; 2019; 33():237-248. PubMed ID: 31166196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of Pseudomonas C on C1 compounds: enzyme activites in extracts of Pseudomonas C cells grown on methanol, formaldehyde, and formate as sole carbon sources.
    Goldberg I; Mateles RI
    J Bacteriol; 1975 Apr; 122(1):47-53. PubMed ID: 235511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering the Reductive Glycine Pathway: A Promising Synthetic Metabolism Approach for C1-Assimilation.
    Claassens NJ; Satanowski A; Bysani VR; Dronsella B; Orsi E; Rainaldi V; Yilmaz S; Wenk S; Lindner SN
    Adv Biochem Eng Biotechnol; 2022; 180():299-350. PubMed ID: 35364693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered Assimilation of Exogenous and Endogenous Formate in Escherichia coli.
    Yishai O; Goldbach L; Tenenboim H; Lindner SN; Bar-Even A
    ACS Synth Biol; 2017 Sep; 6(9):1722-1731. PubMed ID: 28558223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptively evolved
    Kim SJ; Yoon J; Im DK; Kim YH; Oh MK
    Biotechnol Biofuels; 2019; 12():207. PubMed ID: 31497067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methanol Dehydrogenases as a Key Biocatalysts for Synthetic Methylotrophy.
    Le TK; Lee YJ; Han GH; Yeom SJ
    Front Bioeng Biotechnol; 2021; 9():787791. PubMed ID: 35004648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formate Utilization by the Crenarchaeon
    Ergal I; Reischl B; Hasibar B; Manoharan L; Zipperle A; Bochmann G; Fuchs W; Rittmann SKR
    Microorganisms; 2020 Mar; 8(3):. PubMed ID: 32210133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator.
    Claassens NJ; Bordanaba-Florit G; Cotton CAR; De Maria A; Finger-Bou M; Friedeheim L; Giner-Laguarda N; Munar-Palmer M; Newell W; Scarinci G; Verbunt J; de Vries ST; Yilmaz S; Bar-Even A
    Metab Eng; 2020 Nov; 62():30-41. PubMed ID: 32805426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocatalysis for the application of CO2 as a chemical feedstock.
    Alissandratos A; Easton CJ
    Beilstein J Org Chem; 2015; 11():2370-87. PubMed ID: 26734087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core Catalysis of the Reductive Glycine Pathway Demonstrated in Yeast.
    Gonzalez de la Cruz J; Machens F; Messerschmidt K; Bar-Even A
    ACS Synth Biol; 2019 May; 8(5):911-917. PubMed ID: 31002757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C1 Compound Biosensors: Design, Functional Study, and Applications.
    Lee JY; Sung BH; Oh SH; Kwon KK; Lee H; Kim H; Lee DH; Yeom SJ; Lee SG
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31067766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optimized methanol assimilation pathway relying on promiscuous formaldehyde-condensing aldolases in E. coli.
    He H; Höper R; Dodenhöft M; Marlière P; Bar-Even A
    Metab Eng; 2020 Jul; 60():1-13. PubMed ID: 32169542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring eukaryotic formate metabolisms to enhance microbial growth and lipid accumulation.
    Liu Z; Oyetunde T; Hollinshead WD; Hermanns A; Tang YJ; Liao W; Liu Y
    Biotechnol Biofuels; 2017; 10():22. PubMed ID: 28149324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Expression of the Clostridium ljungdahlii Acetyl-Coenzyme A Synthase in Clostridium acetobutylicum as Demonstrated by a Novel
    Fast AG; Papoutsakis ET
    Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29374033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO
    Carlson ED; Papoutsakis ET
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28625981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.