These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 34651233)
1. A Systematic Approach for Liposome and Lipodisk Preclinical Formulation Development by Microfluidic Technology. Levy ES; Yu J; Estevez A; Mao J; Liu L; Torres E; Leung D; Yen CW AAPS J; 2021 Oct; 23(6):111. PubMed ID: 34651233 [TBL] [Abstract][Full Text] [Related]
2. Manufacturing of 3D-Printed Microfluidic Devices for the Synthesis of Drug-Loaded Liposomal Formulations. Ballacchino G; Weaver E; Mathew E; Dorati R; Genta I; Conti B; Lamprou DA Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360832 [TBL] [Abstract][Full Text] [Related]
3. Rapid optimization of liposome characteristics using a combined microfluidics and design-of-experiment approach. Sedighi M; Sieber S; Rahimi F; Shahbazi MA; Rezayan AH; Huwyler J; Witzigmann D Drug Deliv Transl Res; 2019 Feb; 9(1):404-413. PubMed ID: 30306459 [TBL] [Abstract][Full Text] [Related]
4. Novel microfluidic swirl mixers for scalable formulation of curcumin loaded liposomes for cancer therapy. Xu R; Tomeh MA; Ye S; Zhang P; Lv S; You R; Wang N; Zhao X Int J Pharm; 2022 Jun; 622():121857. PubMed ID: 35623489 [TBL] [Abstract][Full Text] [Related]
5. Robust Microfluidic Technology and New Lipid Composition for Fabrication of Curcumin-Loaded Liposomes: Effect on the Anticancer Activity and Safety of Cisplatin. Hamano N; Böttger R; Lee SE; Yang Y; Kulkarni JA; Ip S; Cullis PR; Li SD Mol Pharm; 2019 Sep; 16(9):3957-3967. PubMed ID: 31381352 [TBL] [Abstract][Full Text] [Related]
6. Liposome co-encapsulation as a strategy for the delivery of curcumin and resveratrol. Huang M; Liang C; Tan C; Huang S; Ying R; Wang Y; Wang Z; Zhang Y Food Funct; 2019 Oct; 10(10):6447-6458. PubMed ID: 31524893 [TBL] [Abstract][Full Text] [Related]
7. Dexamethasone Loaded Liposomes by Thin-Film Hydration and Microfluidic Procedures: Formulation Challenges. Al-Amin MD; Bellato F; Mastrotto F; Garofalo M; Malfanti A; Salmaso S; Caliceti P Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32111100 [TBL] [Abstract][Full Text] [Related]
8. Machine learning instructed microfluidic synthesis of curcumin-loaded liposomes. Di Francesco V; Boso DP; Moore TL; Schrefler BA; Decuzzi P Biomed Microdevices; 2023 Aug; 25(3):29. PubMed ID: 37542568 [TBL] [Abstract][Full Text] [Related]
9. Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials. Gdowski A; Johnson K; Shah S; Gryczynski I; Vishwanatha J; Ranjan A J Nanobiotechnology; 2018 Feb; 16(1):12. PubMed ID: 29433518 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic synthesis of PEG- and folate-conjugated liposomes for one-step formation of targeted stealth nanocarriers. Hood RR; Shao C; Omiatek DM; Vreeland WN; DeVoe DL Pharm Res; 2013 Jun; 30(6):1597-607. PubMed ID: 23386106 [TBL] [Abstract][Full Text] [Related]
11. Microfluidic manufacturing of phospholipid nanoparticles: Stability, encapsulation efficacy, and drug release. Guimarães Sá Correia M; Briuglia ML; Niosi F; Lamprou DA Int J Pharm; 2017 Jan; 516(1-2):91-99. PubMed ID: 27840162 [TBL] [Abstract][Full Text] [Related]
12. A targeted liposome delivery system for combretastatin A4: formulation optimization through drug loading and in vitro release studies. Nallamothu R; Wood GC; Kiani MF; Moore BM; Horton FP; Thoma LA PDA J Pharm Sci Technol; 2006; 60(3):144-55. PubMed ID: 17089683 [TBL] [Abstract][Full Text] [Related]
13. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. Fan Y; Marioli M; Zhang K J Pharm Biomed Anal; 2021 Jan; 192():113642. PubMed ID: 33011580 [TBL] [Abstract][Full Text] [Related]
14. Microfluidic paclitaxel-loaded lipid nanoparticle formulations for chemotherapy. Jaradat E; Weaver E; Meziane A; Lamprou DA Int J Pharm; 2022 Nov; 628():122320. PubMed ID: 36272514 [TBL] [Abstract][Full Text] [Related]
15. Dual centrifugation as a novel and efficient method for the preparation of lipodisks. Ali S; Koehler JK; Silva L; Gedda L; Massing U; Edwards K Int J Pharm; 2024 Mar; 653():123894. PubMed ID: 38350501 [TBL] [Abstract][Full Text] [Related]
16. The suitability of liposomes for the delivery of hydrophobic drugs - A case study with curcumin. Kolter M; Wittmann M; Köll-Weber M; Süss R Eur J Pharm Biopharm; 2019 Jul; 140():20-28. PubMed ID: 31015019 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic synthesis of multifunctional liposomes for tumour targeting. Ran R; Middelberg APJ; Zhao CX Colloids Surf B Biointerfaces; 2016 Dec; 148():402-410. PubMed ID: 27639490 [TBL] [Abstract][Full Text] [Related]
18. Microfluidics based manufacture of liposomes simultaneously entrapping hydrophilic and lipophilic drugs. Joshi S; Hussain MT; Roces CB; Anderluzzi G; Kastner E; Salmaso S; Kirby DJ; Perrie Y Int J Pharm; 2016 Nov; 514(1):160-168. PubMed ID: 27863660 [TBL] [Abstract][Full Text] [Related]
19. Microfluidic-assisted fabrication of phosphatidylcholine-based liposomes for controlled drug delivery of chemotherapeutics. Gkionis L; Aojula H; Harris LK; Tirella A Int J Pharm; 2021 Jul; 604():120711. PubMed ID: 34015381 [TBL] [Abstract][Full Text] [Related]
20. Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy. Ranjan AP; Mukerjee A; Helson L; Vishwanatha JK J Nanobiotechnology; 2012 Aug; 10():38. PubMed ID: 22937885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]