These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 34651394)

  • 1. Response of Amazonian forests to mid-Holocene drought: A model-data comparison.
    Smith RJ; Singarayer JS; Mayle FE
    Glob Chang Biol; 2022 Jan; 28(1):201-226. PubMed ID: 34651394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of a drier Early-Mid-Holocene climate upon Amazonian forests.
    Mayle FE; Power MJ
    Philos Trans R Soc Lond B Biol Sci; 2008 May; 363(1498):1829-38. PubMed ID: 18267912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest.
    Malhi Y; Aragão LE; Galbraith D; Huntingford C; Fisher R; Zelazowski P; Sitch S; McSweeney C; Meir P
    Proc Natl Acad Sci U S A; 2009 Dec; 106(49):20610-5. PubMed ID: 19218454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fire, climate and vegetation linkages in the Bolivian Chiquitano seasonally dry tropical forest.
    Power MJ; Whitney BS; Mayle FE; Neves DM; de Boer EJ; Maclean KS
    Philos Trans R Soc Lond B Biol Sci; 2016 Jun; 371(1696):. PubMed ID: 27216522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate regime shift and forest loss amplify fire in Amazonian forests.
    Xu X; Jia G; Zhang X; Riley WJ; Xue Y
    Glob Chang Biol; 2020 Oct; 26(10):5874-5885. PubMed ID: 32662146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum.
    Mayle FE; Beerling DJ; Gosling WD; Bush MB
    Philos Trans R Soc Lond B Biol Sci; 2004 Mar; 359(1443):499-514. PubMed ID: 15212099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charcoal-inferred Holocene fire and vegetation history linked to drought periods in the Democratic Republic of Congo.
    Hubau W; Van den Bulcke J; Van Acker J; Beeckman H
    Glob Chang Biol; 2015 Jun; 21(6):2296-308. PubMed ID: 25594742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison.
    Restrepo-Coupe N; Levine NM; Christoffersen BO; Albert LP; Wu J; Costa MH; Galbraith D; Imbuzeiro H; Martins G; da Araujo AC; Malhi YS; Zeng X; Moorcroft P; Saleska SR
    Glob Chang Biol; 2017 Jan; 23(1):191-208. PubMed ID: 27436068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the growth and climate sensitivity of secondary forests in highly deforested Amazonian landscapes.
    Elias F; Ferreira J; Lennox GD; Berenguer E; Ferreira S; Schwartz G; Melo LO; Reis Júnior DN; Nascimento RO; Ferreira FN; Espirito-Santo F; Smith CC; Barlow J
    Ecology; 2020 Mar; 101(3):e02954. PubMed ID: 31840235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asynchronous carbon sink saturation in African and Amazonian tropical forests.
    Hubau W; Lewis SL; Phillips OL; Affum-Baffoe K; Beeckman H; Cuní-Sanchez A; Daniels AK; Ewango CEN; Fauset S; Mukinzi JM; Sheil D; Sonké B; Sullivan MJP; Sunderland TCH; Taedoumg H; Thomas SC; White LJT; Abernethy KA; Adu-Bredu S; Amani CA; Baker TR; Banin LF; Baya F; Begne SK; Bennett AC; Benedet F; Bitariho R; Bocko YE; Boeckx P; Boundja P; Brienen RJW; Brncic T; Chezeaux E; Chuyong GB; Clark CJ; Collins M; Comiskey JA; Coomes DA; Dargie GC; de Haulleville T; Kamdem MND; Doucet JL; Esquivel-Muelbert A; Feldpausch TR; Fofanah A; Foli EG; Gilpin M; Gloor E; Gonmadje C; Gourlet-Fleury S; Hall JS; Hamilton AC; Harris DJ; Hart TB; Hockemba MBN; Hladik A; Ifo SA; Jeffery KJ; Jucker T; Yakusu EK; Kearsley E; Kenfack D; Koch A; Leal ME; Levesley A; Lindsell JA; Lisingo J; Lopez-Gonzalez G; Lovett JC; Makana JR; Malhi Y; Marshall AR; Martin J; Martin EH; Mbayu FM; Medjibe VP; Mihindou V; Mitchard ETA; Moore S; Munishi PKT; Bengone NN; Ojo L; Ondo FE; Peh KS; Pickavance GC; Poulsen AD; Poulsen JR; Qie L; Reitsma J; Rovero F; Swaine MD; Talbot J; Taplin J; Taylor DM; Thomas DW; Toirambe B; Mukendi JT; Tuagben D; Umunay PM; van der Heijden GMF; Verbeeck H; Vleminckx J; Willcock S; Wöll H; Woods JT; Zemagho L
    Nature; 2020 Mar; 579(7797):80-87. PubMed ID: 32132693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early to mid-Holocene human activity exerted gradual influences on Amazonian forest vegetation.
    Nascimento MN; Heijink BM; Bush MB; Gosling WD; McMichael CNH
    Philos Trans R Soc Lond B Biol Sci; 2022 Apr; 377(1849):20200498. PubMed ID: 35249380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate change, allergy and asthma, and the role of tropical forests.
    D'Amato G; Vitale C; Rosario N; Neto HJC; Chong-Silva DC; Mendonça F; Perini J; Landgraf L; Solé D; Sánchez-Borges M; Ansotegui I; D'Amato M
    World Allergy Organ J; 2017; 10(1):11. PubMed ID: 28286602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics, patterns and causes of fires in Northwestern Amazonia.
    Armenteras D; Retana J
    PLoS One; 2012; 7(4):e35288. PubMed ID: 22523580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental change and the carbon balance of Amazonian forests.
    Aragão LE; Poulter B; Barlow JB; Anderson LO; Malhi Y; Saatchi S; Phillips OL; Gloor E
    Biol Rev Camb Philos Soc; 2014 Nov; 89(4):913-31. PubMed ID: 25324039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Past and future evolution of Abies alba forests in Europe - comparison of a dynamic vegetation model with palaeo data and observations.
    Ruosch M; Spahni R; Joos F; Henne PD; van der Knaap WO; Tinner W
    Glob Chang Biol; 2016 Feb; 22(2):727-40. PubMed ID: 26316296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian forest.
    Esteban EJL; Castilho CV; Melgaço KL; Costa FRC
    New Phytol; 2021 Feb; 229(4):1995-2006. PubMed ID: 33048346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change.
    Galbraith D; Levy PE; Sitch S; Huntingford C; Cox P; Williams M; Meir P
    New Phytol; 2010 Aug; 187(3):647-65. PubMed ID: 20659253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased drought impacts on temperate rainforests from southern South America: results of a process-based, dynamic forest model.
    Gutiérrez AG; Armesto JJ; Díaz MF; Huth A
    PLoS One; 2014; 9(7):e103226. PubMed ID: 25068869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Run to the hills: Forest growth responsiveness to drought increased at higher elevation during the late 20th century.
    Pompa-García M; González-Cásares M; Gazol A; Camarero JJ
    Sci Total Environ; 2021 Jun; 772():145286. PubMed ID: 33578149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Amazonian rainforest and its fragments as a laboratory of global change.
    Laurance WF; Camargo JLC; Fearnside PM; Lovejoy TE; Williamson GB; Mesquita RCG; Meyer CFJ; Bobrowiec PED; Laurance SGW
    Biol Rev Camb Philos Soc; 2018 Feb; 93(1):223-247. PubMed ID: 28560765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.