BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34651617)

  • 1. Chemometric strategies for near infrared hyperspectral imaging analysis: classification of cotton seed genotypes.
    Rocha PD; Medeiros EP; Silva CS; da Silva Simões S
    Anal Methods; 2021 Nov; 13(42):5065-5074. PubMed ID: 34651617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinguishing cotton seed genotypes by means of vibrational spectroscopic methods (NIR and Raman) and chemometrics.
    Mata MMD; Rocha PD; Farias IKT; Silva JLBD; Medeiros EP; Silva CS; Simões SDS
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 266():120399. PubMed ID: 34597869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maturity Stage Discrimination of
    Jiang H; Hu Y; Jiang X; Zhou H
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A chemometric approach to assess the oil composition and content of microwave-treated mustard (Brassica juncea) seeds using Vis-NIR-SWIR hyperspectral imaging.
    Hamad R; Chakraborty SK
    Sci Rep; 2024 Jul; 14(1):15643. PubMed ID: 38977722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-Infrared Hyperspectral Imaging Combined with Deep Learning to Identify Cotton Seed Varieties.
    Zhu S; Zhou L; Gao P; Bao Y; He Y; Feng L
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31500333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single Seed Near-Infrared Hyperspectral Imaging for Classification of Perennial Ryegrass Seed.
    Reddy P; Panozzo J; Guthridge KM; Spangenberg GC; Rochfort SJ
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-Infrared Hyperspectral Imaging Pipelines for Pasture Seed Quality Evaluation: An Overview.
    Reddy P; Guthridge KM; Panozzo J; Ludlow EJ; Spangenberg GC; Rochfort SJ
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of identifying the authenticity of fresh and cooked mutton kebabs using visible and near-infrared hyperspectral imaging.
    Jiang H; Yuan W; Ru Y; Chen Q; Wang J; Zhou H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec; 282():121689. PubMed ID: 35914356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Honeydew Contaminations on Cotton Samples by In-Line UV Hyperspectral Imaging.
    Al Ktash M; Stefanakis M; Wackenhut F; Jehle V; Ostertag E; Rebner K; Brecht M
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rice seed cultivar identification using near-infrared hyperspectral imaging and multivariate data analysis.
    Kong W; Zhang C; Liu F; Nie P; He Y
    Sensors (Basel); 2013 Jul; 13(7):8916-27. PubMed ID: 23857260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Reliable Methodology for Determining Seed Viability by Using Hyperspectral Data from Two Sides of Wheat Seeds.
    Zhang T; Wei W; Zhao B; Wang R; Li M; Yang L; Wang J; Sun Q
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29517991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Establishment and Application of Model for Determining Oil Content of Cottonseed Using Near Infrared Spectroscopy].
    Shang LG; Li JH; Wang YM; Li YH; Wang D; Xiong M; Hua JP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Mar; 35(3):609-12. PubMed ID: 26117864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling and numerical methods for identifying low-level adulteration in ground beef using near-infrared hyperspectral imaging (NIR-HSI).
    Jia W; Ferragina A; Hamill R; Koidis A
    Talanta; 2024 Aug; 276():126199. PubMed ID: 38714010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Transmission Raman spectroscopy and NIR Hyperspectral Imaging for the assessment of content uniformity in solid oral dosage forms
    Belay NF; Busche S; Manici V; Shaukat M; Arndt SO; Schmidt C
    Eur J Pharm Sci; 2021 Nov; 166():105963. PubMed ID: 34352284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-destructive analysis of germination percentage, germination energy and simple vigour index on wheat seeds during storage by Vis/NIR and SWIR hyperspectral imaging.
    Zhang T; Fan S; Xiang Y; Zhang S; Wang J; Sun Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Oct; 239():118488. PubMed ID: 32470809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid identification of the green tea geographical origin and processing month based on near-infrared hyperspectral imaging combined with chemometrics.
    Liu Y; Huang J; Li M; Chen Y; Cui Q; Lu C; Wang Y; Li L; Xu Z; Zhong Y; Ning J
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 267(Pt 1):120537. PubMed ID: 34740002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of Listeria monocytogenes serotypes using near infrared hyperspectral imaging.
    Matenda RT; Rip D; Fernández Pierna JA; Baeten V; Williams PJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Nov; 320():124579. PubMed ID: 38850824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of oat and groat kernels using NIR hyperspectral imaging.
    Serranti S; Cesare D; Marini F; Bonifazi G
    Talanta; 2013 Jan; 103():276-84. PubMed ID: 23200388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A preliminary study of fingerprint aging using near infrared hyperspectral imaging (NIR-HSI).
    Carneiro CR; Silva CS; Weber IT
    Anal Methods; 2023 Nov; 15(46):6451-6459. PubMed ID: 37975279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-infrared hyperspectral imaging for deoxynivalenol and ergosterol estimation in wheat samples.
    Femenias A; Gatius F; Ramos AJ; Sanchis V; Marín S
    Food Chem; 2021 Mar; 341(Pt 2):128206. PubMed ID: 33035826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.