BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34652045)

  • 1. Catalytic Control of Spiroketal Formation in Rubromycin Polyketide Biosynthesis.
    Toplak M; Saleem-Batcha R; Piel J; Teufel R
    Angew Chem Int Ed Engl; 2021 Dec; 60(52):26960-26970. PubMed ID: 34652045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural analyses of the Group A flavin-dependent monooxygenase PieE reveal a sliding FAD cofactor conformation bridging OUT and IN conformations.
    Manenda MS; Picard MÈ; Zhang L; Cyr N; Zhu X; Barma J; Pascal JM; Couture M; Zhang C; Shi R
    J Biol Chem; 2020 Apr; 295(14):4709-4722. PubMed ID: 32111738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cleavage of four carbon-carbon bonds during biosynthesis of the griseorhodin a spiroketal pharmacophore.
    Yunt Z; Reinhardt K; Li A; Engeser M; Dahse HM; Gütschow M; Bruhn T; Bringmann G; Piel J
    J Am Chem Soc; 2009 Feb; 131(6):2297-305. PubMed ID: 19175308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An acetyltransferase controls the metabolic flux in rubromycin polyketide biosynthesis by direct modulation of redox tailoring enzymes.
    Toplak M; Nagel A; Frensch B; Lechtenberg T; Teufel R
    Chem Sci; 2022 Jun; 13(24):7157-7164. PubMed ID: 35799824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic spiroketal formation via oxidative rearrangement of pentangular polyketides.
    Frensch B; Lechtenberg T; Kather M; Yunt Z; Betschart M; Kammerer B; Lüdeke S; Müller M; Piel J; Teufel R
    Nat Commun; 2021 Mar; 12(1):1431. PubMed ID: 33664266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional interactions in cytochrome P450BM3. Evidence that NADP(H) binding controls redox potentials of the flavin cofactors.
    Murataliev MB; Feyereisen R
    Biochemistry; 2000 Oct; 39(41):12699-707. PubMed ID: 11027150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A radical intermediate in the conversion of pentachlorophenol to tetrachlorohydroquinone by Sphingobium chlorophenolicum.
    Rudolph J; Erbse AH; Behlen LS; Copley SD
    Biochemistry; 2014 Oct; 53(41):6539-49. PubMed ID: 25238136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biosynthetic aspartate N-hydroxylase performs successive oxidations by holding intermediates at a site away from the catalytic center.
    Rotilio L; Boverio A; Nguyen QT; Mannucci B; Fraaije MW; Mattevi A
    J Biol Chem; 2023 Jul; 299(7):104904. PubMed ID: 37302552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing electron transfer in flavocytochrome P-450 BM3 and its component domains.
    Munro AW; Daff S; Coggins JR; Lindsay JG; Chapman SK
    Eur J Biochem; 1996 Jul; 239(2):403-9. PubMed ID: 8706747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactions of
    Lesanavičius M; Aliverti A; Šarlauskas J; Čėnas N
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32370303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional Annotation of a Presumed Nitronate Monoxygenase Reveals a New Class of NADH:Quinone Reductases.
    Ball J; Salvi F; Gadda G
    J Biol Chem; 2016 Sep; 291(40):21160-21170. PubMed ID: 27502282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Staphylococcus aureus sqr Encodes a Type II Sulfide:Quinone Oxidoreductase and Impacts Reactive Sulfur Speciation in Cells.
    Shen J; Peng H; Zhang Y; Trinidad JC; Giedroc DP
    Biochemistry; 2016 Nov; 55(47):6524-6534. PubMed ID: 27806570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Structure of the Antibiotic Deactivating, N-hydroxylating Rifampicin Monooxygenase.
    Liu LK; Abdelwahab H; Martin Del Campo JS; Mehra-Chaudhary R; Sobrado P; Tanner JJ
    J Biol Chem; 2016 Oct; 291(41):21553-21562. PubMed ID: 27557658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the flavin monooxygenase involved in biosynthesis of the antimalarial FR-900098.
    Nguyen K; DeSieno MA; Bae B; Johannes TW; Cobb RE; Zhao H; Nair SK
    Org Biomol Chem; 2019 Feb; 17(6):1506-1518. PubMed ID: 30681110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Determinants of Flavin Dynamics in a Class B Monooxygenase.
    Campbell AC; Robinson R; Mena-Aguilar D; Sobrado P; Tanner JJ
    Biochemistry; 2020 Dec; 59(48):4609-4616. PubMed ID: 33226785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trapping conformational states of a flavin-dependent
    Campbell AC; Stiers KM; Martin Del Campo JS; Mehra-Chaudhary R; Sobrado P; Tanner JJ
    J Biol Chem; 2020 Sep; 295(38):13239-13249. PubMed ID: 32723870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The FAD-shielding residue Phe1395 regulates neuronal nitric-oxide synthase catalysis by controlling NADP+ affinity and a conformational equilibrium within the flavoprotein domain.
    Konas DW; Zhu K; Sharma M; Aulak KS; Brudvig GW; Stuehr DJ
    J Biol Chem; 2004 Aug; 279(34):35412-25. PubMed ID: 15180983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of flavin semiquinone during the reduction of P450 BM3 reductase domain with NADPH.
    Munro AW; Coggins JR; Lindsay JG; Daff S; Chapman SK
    Biochem Soc Trans; 1996 Feb; 24(1):18S. PubMed ID: 8674656
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.