These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Machine learning forecasting of active nematics. Zhou Z; Joshi C; Liu R; Norton MM; Lemma L; Dogic Z; Hagan MF; Fraden S; Hong P Soft Matter; 2021 Jan; 17(3):738-747. PubMed ID: 33220675 [TBL] [Abstract][Full Text] [Related]
4. Dynamic structure of active nematic shells. Zhang R; Zhou Y; Rahimi M; de Pablo JJ Nat Commun; 2016 Nov; 7():13483. PubMed ID: 27869130 [TBL] [Abstract][Full Text] [Related]
5. Rectified Rotational Dynamics of Mobile Inclusions in Two-Dimensional Active Nematics. Ray S; Zhang J; Dogic Z Phys Rev Lett; 2023 Jun; 130(23):238301. PubMed ID: 37354394 [TBL] [Abstract][Full Text] [Related]
6. Statistical properties of autonomous flows in 2D active nematics. Lemma LM; DeCamp SJ; You Z; Giomi L; Dogic Z Soft Matter; 2019 Apr; 15(15):3264-3272. PubMed ID: 30920553 [TBL] [Abstract][Full Text] [Related]
7. Motor crosslinking augments elasticity in active nematics. Redford SA; Colen J; Shivers JL; Zemsky S; Molaei M; Floyd C; Ruijgrok PV; Vitelli V; Bryant Z; Dinner AR; Gardel ML ArXiv; 2023 Aug; ():. PubMed ID: 37693184 [TBL] [Abstract][Full Text] [Related]
8. Motor crosslinking augments elasticity in active nematics. Redford SA; Colen J; Shivers JL; Zemsky S; Molaei M; Floyd C; Ruijgrok PV; Vitelli V; Bryant Z; Dinner AR; Gardel ML Soft Matter; 2024 Mar; 20(11):2480-2490. PubMed ID: 38385209 [TBL] [Abstract][Full Text] [Related]
9. Defect dynamics in active polar fluids Vafa F Soft Matter; 2022 Nov; 18(42):8087-8097. PubMed ID: 36239265 [TBL] [Abstract][Full Text] [Related]
10. Spatio-temporal patterning of extensile active stresses in microtubule-based active fluids. Lemma LM; Varghese M; Ross TD; Thomson M; Baskaran A; Dogic Z PNAS Nexus; 2023 May; 2(5):pgad130. PubMed ID: 37168671 [TBL] [Abstract][Full Text] [Related]
11. Orientational order of motile defects in active nematics. DeCamp SJ; Redner GS; Baskaran A; Hagan MF; Dogic Z Nat Mater; 2015 Nov; 14(11):1110-5. PubMed ID: 26280224 [TBL] [Abstract][Full Text] [Related]
12. Physically informed data-driven modeling of active nematics. Golden M; Grigoriev RO; Nambisan J; Fernandez-Nieves A Sci Adv; 2023 Jul; 9(27):eabq6120. PubMed ID: 37406118 [TBL] [Abstract][Full Text] [Related]
13. Correlation lengths in hydrodynamic models of active nematics. Hemingway EJ; Mishra P; Marchetti MC; Fielding SM Soft Matter; 2016 Sep; 12(38):7943-7952. PubMed ID: 27722646 [TBL] [Abstract][Full Text] [Related]
14. Data-driven quantitative modeling of bacterial active nematics. Li H; Shi XQ; Huang M; Chen X; Xiao M; Liu C; Chaté H; Zhang HP Proc Natl Acad Sci U S A; 2019 Jan; 116(3):777-785. PubMed ID: 30593562 [TBL] [Abstract][Full Text] [Related]
15. Active nematic-isotropic interfaces in channels. Coelho RCV; Araújo NAM; Telo da Gama MM Soft Matter; 2019 Aug; 15(34):6819-6829. PubMed ID: 31334740 [TBL] [Abstract][Full Text] [Related]
16. Director alignment at the nematic-isotropic interface: elastic anisotropy and active anchoring. Coelho RCV; Araújo NAM; Telo da Gama MM Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2208):20200394. PubMed ID: 34455836 [TBL] [Abstract][Full Text] [Related]
17. Kinesin-12 motors cooperate to suppress microtubule catastrophes and drive the formation of parallel microtubule bundles. Drechsler H; McAinsh AD Proc Natl Acad Sci U S A; 2016 Mar; 113(12):E1635-44. PubMed ID: 26969727 [TBL] [Abstract][Full Text] [Related]