These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34652493)

  • 1. The role of spatial acuity in a dynamic balancing task without gravitational cues.
    Vimal VP; DiZio P; Lackner JR
    Exp Brain Res; 2022 Jan; 240(1):123-133. PubMed ID: 34652493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning and long-term retention of dynamic self-stabilization skills.
    Vimal VP; DiZio P; Lackner JR
    Exp Brain Res; 2019 Nov; 237(11):2775-2787. PubMed ID: 31444539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning dynamic control of body yaw orientation.
    Vimal VP; Lackner JR; DiZio P
    Exp Brain Res; 2018 May; 236(5):1321-1330. PubMed ID: 29508040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crash Prediction Using Deep Learning in a Disorienting Spaceflight Analog Balancing Task.
    Wang Y; Tang J; Vimal VP; Lackner JR; DiZio P; Hong P
    Front Physiol; 2022; 13():806357. PubMed ID: 35153834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrotactile feedback as a countermeasure for spatial disorientation.
    Vimal VP; Panic AS; Lackner JR; DiZio P
    Front Physiol; 2023; 14():1249962. PubMed ID: 38028769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning dynamic balancing in the roll plane with and without gravitational cues.
    Vimal VP; DiZio P; Lackner JR
    Exp Brain Res; 2017 Nov; 235(11):3495-3503. PubMed ID: 28849394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing Individual Differences in a Dynamic Stabilization Task Using Machine Learning.
    Vimal VP; Zheng H; Hong P; Fakharzadeh LN; Lackner JR; DiZio P
    Aerosp Med Hum Perform; 2020 Jun; 91(6):479-488. PubMed ID: 32408931
    [No Abstract]   [Full Text] [Related]  

  • 8. Gravitational and Somatosensory Influences on Control and Perception of Roll Balance.
    Panic AS; Panic H; DiZio P; Lackner JR
    Aerosp Med Hum Perform; 2017 Nov; 88(11):993-999. PubMed ID: 29046174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inertial representation of angular motion in the vestibular system of rhesus monkeys. I. Vestibuloocular reflex.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1994 Mar; 71(3):1222-49. PubMed ID: 8201414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direction of balance and perception of the upright are perceptually dissociable.
    Panic H; Panic AS; DiZio P; Lackner JR
    J Neurophysiol; 2015 Jun; 113(10):3600-9. PubMed ID: 25761954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning dynamic control of body roll orientation.
    Vimal VP; Lackner JR; DiZio P
    Exp Brain Res; 2016 Feb; 234(2):483-92. PubMed ID: 26525709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flipping a Switch "Down" When Not Aligned with the Gravitational Vertical.
    Bock O; Bury N
    Aerosp Med Hum Perform; 2016; 87(10):838-843. PubMed ID: 27662345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human 3-D aVOR with and without otolith stimulation.
    Bockisch CJ; Straumann D; Haslwanter T
    Exp Brain Res; 2005 Mar; 161(3):358-67. PubMed ID: 15490132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organizational principles of velocity storage in three dimensions. The effect of gravity on cross-coupling of optokinetic after-nystagmus.
    Raphan T; Cohen B
    Ann N Y Acad Sci; 1988; 545():74-92. PubMed ID: 3239884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensorimotor impairment from a new analog of spaceflight-altered neurovestibular cues.
    Dixon JB; Clark TK
    J Neurophysiol; 2020 Jan; 123(1):209-223. PubMed ID: 31747329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical Role of Somatosensation in Postural Control Following Spaceflight: Vestibularly Deficient Astronauts Are Not Able to Maintain Upright Stance During Compromised Somatosensation.
    Ozdemir RA; Goel R; Reschke MF; Wood SJ; Paloski WH
    Front Physiol; 2018; 9():1680. PubMed ID: 30538640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deficits and recovery of head and trunk orientation and stabilization after unilateral vestibular loss.
    Borel L; Harlay F; Magnan J; Chays A; Lacour M
    Brain; 2002 Apr; 125(Pt 4):880-94. PubMed ID: 11912120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of the subjective vertical during roll, pitch, and recumbent yaw body tilt.
    Bortolami SB; Pierobon A; DiZio P; Lackner JR
    Exp Brain Res; 2006 Aug; 173(3):364-73. PubMed ID: 16628401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in the accuracy of human visuospatial memory after yaw and roll rotations.
    Klier EM; Hess BJ; Angelaki DE
    J Neurophysiol; 2006 Apr; 95(4):2692-7. PubMed ID: 16371458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roll tilt psychophysics in rhesus monkeys during vestibular and visual stimulation.
    Lewis RF; Haburcakova C; Merfeld DM
    J Neurophysiol; 2008 Jul; 100(1):140-53. PubMed ID: 18417632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.