These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34652939)

  • 1. Cooling photon-pressure circuits into the quantum regime.
    Rodrigues IC; Bothner D; Steele GA
    Sci Adv; 2021 Oct; 7(42):eabg6653. PubMed ID: 34652939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parametrically enhanced interactions and nonreciprocal bath dynamics in a photon-pressure Kerr amplifier.
    Rodrigues IC; Steele GA; Bothner D
    Sci Adv; 2022 Aug; 8(34):eabq1690. PubMed ID: 36026455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation and stabilization of photonic Fock states in a hot radio-frequency resonator.
    Gely MF; Kounalakis M; Dickel C; Dalle J; Vatré R; Baker B; Jenkins MD; Steele GA
    Science; 2019 Mar; 363(6431):1072-1075. PubMed ID: 30846596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sideband cooling of micromechanical motion to the quantum ground state.
    Teufel JD; Donner T; Li D; Harlow JW; Allman MS; Cicak K; Sirois AJ; Whittaker JD; Lehnert KW; Simmonds RW
    Nature; 2011 Jul; 475(7356):359-63. PubMed ID: 21734657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cavity piezo-mechanics for superconducting-nanophotonic quantum interface.
    Han X; Fu W; Zhong C; Zou CL; Xu Y; Sayem AA; Xu M; Wang S; Cheng R; Jiang L; Tang HX
    Nat Commun; 2020 Jun; 11(1):3237. PubMed ID: 32591510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A gated quantum dot strongly coupled to an optical microcavity.
    Najer D; Söllner I; Sekatski P; Dolique V; Löbl MC; Riedel D; Schott R; Starosielec S; Valentin SR; Wieck AD; Sangouard N; Ludwig A; Warburton RJ
    Nature; 2019 Nov; 575(7784):622-627. PubMed ID: 31634901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimode Strong Coupling in Superconducting Cavity Piezoelectromechanics.
    Han X; Zou CL; Tang HX
    Phys Rev Lett; 2016 Sep; 117(12):123603. PubMed ID: 27689272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity.
    Yuan M; Singh V; Blanter YM; Steele GA
    Nat Commun; 2015 Oct; 6():8491. PubMed ID: 26450772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolving photon number states in a superconducting circuit.
    Schuster DI; Houck AA; Schreier JA; Wallraff A; Gambetta JM; Blais A; Frunzio L; Majer J; Johnson B; Devoret MH; Girvin SM; Schoelkopf RJ
    Nature; 2007 Feb; 445(7127):515-8. PubMed ID: 17268464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.
    Verhagen E; Deléglise S; Weis S; Schliesser A; Kippenberg TJ
    Nature; 2012 Feb; 482(7383):63-7. PubMed ID: 22297970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proposal for Heralded Generation and Detection of Entangled Microwave-Optical-Photon Pairs.
    Zhong C; Wang Z; Zou C; Zhang M; Han X; Fu W; Xu M; Shankar S; Devoret MH; Tang HX; Jiang L
    Phys Rev Lett; 2020 Jan; 124(1):010511. PubMed ID: 31976686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circuit cavity electromechanics in the strong-coupling regime.
    Teufel JD; Li D; Allman MS; Cicak K; Sirois AJ; Whittaker JD; Simmonds RW
    Nature; 2011 Mar; 471(7337):204-8. PubMed ID: 21390127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triply resonant coupled-cavity electro-optic modulators for RF to optical signal conversion.
    Gevorgyan H; Khilo A; Ehrlichman Y; Popović MA
    Opt Express; 2020 Jan; 28(1):788-815. PubMed ID: 32119000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum electromechanics of a hypersonic crystal.
    Kalaee M; Mirhosseini M; Dieterle PB; Peruzzo M; Fink JM; Painter O
    Nat Nanotechnol; 2019 Apr; 14(4):334-339. PubMed ID: 30778214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser Cooling of a Nanomechanical Oscillator to Its Zero-Point Energy.
    Qiu L; Shomroni I; Seidler P; Kippenberg TJ
    Phys Rev Lett; 2020 May; 124(17):173601. PubMed ID: 32412282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling a quantum dot, fermionic leads, and a microwave cavity on a chip.
    Delbecq MR; Schmitt V; Parmentier FD; Roch N; Viennot JJ; Fève G; Huard B; Mora C; Cottet A; Kontos T
    Phys Rev Lett; 2011 Dec; 107(25):256804. PubMed ID: 22243102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of quantum state collapse and revival due to the single-photon Kerr effect.
    Kirchmair G; Vlastakis B; Leghtas Z; Nigg SE; Paik H; Ginossar E; Mirrahimi M; Frunzio L; Girvin SM; Schoelkopf RJ
    Nature; 2013 Mar; 495(7440):205-9. PubMed ID: 23486059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering the microwave to infrared noise photon flux for superconducting quantum systems.
    Danilin S; Barbosa J; Farage M; Zhao Z; Shang X; Burnett J; Ridler N; Li C; Weides M
    EPJ Quantum Technol; 2022; 9(1):1. PubMed ID: 35098151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ultra-high gain single-photon transistor in the microwave regime.
    Wang Z; Bao Z; Li Y; Wu Y; Cai W; Wang W; Han X; Wang J; Song Y; Sun L; Zhang H; Duan L
    Nat Commun; 2022 Oct; 13(1):6104. PubMed ID: 36243719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.
    Wallraff A; Schuster DI; Blais A; Frunzio L; Huang R; Majer J; Kumar S; Girvin SM; Schoelkopf RJ
    Nature; 2004 Sep; 431(7005):162-7. PubMed ID: 15356625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.