These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34652995)

  • 1. Real-Time Adaptation of an Artificial Neural Network for Transfemoral Amputees Using a Powered Prosthesis.
    Woodward R; Simon A; Seyforth E; Hargrove L
    IEEE Trans Biomed Eng; 2022 Mar; 69(3):1202-1211. PubMed ID: 34652995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. User intent prediction with a scaled conjugate gradient trained artificial neural network for lower limb amputees using a powered prosthesis.
    Woodward RB; Spanias JA; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6405-6408. PubMed ID: 28325033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Classification Method for User-Independent Intent Recognition for Transfemoral Amputees Using Powered Lower Limb Prostheses.
    Young AJ; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2016 Feb; 24(2):217-25. PubMed ID: 25794392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Across-user adaptation for a powered lower limb prosthesis.
    Spanias JA; Simon AM; Hargrove LJ
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1580-1583. PubMed ID: 28814045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ambulation Mode Classification of Individuals with Transfemoral Amputation through A-Mode Sonomyography and Convolutional Neural Networks.
    Murray R; Mendez J; Gabert L; Fey NP; Liu H; Lenzi T
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the performance of a neural-machine interface for prosthetic legs using adaptive pattern classifiers.
    Du L; Zhang F; He H; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1571-4. PubMed ID: 24110001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques.
    Cárdenas AM; Uribe J; Font-Llagunes JM; Hernández AM; Plata JA
    Gait Posture; 2023 May; 102():125-131. PubMed ID: 37011558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Weight-Bearing Symmetry for Transfemoral Amputees During Standing Up and Sitting Down With a Powered Knee-Ankle Prosthesis.
    Simon AM; Fey NP; Ingraham KA; Finucane SB; Halsne EG; Hargrove LJ
    Arch Phys Med Rehabil; 2016 Jul; 97(7):1100-6. PubMed ID: 26686876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering platform and experimental protocol for design and evaluation of a neurally-controlled powered transfemoral prosthesis.
    Zhang F; Liu M; Harper S; Lee M; Huang H
    J Vis Exp; 2014 Jul; (89):. PubMed ID: 25079449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A powered prosthetic intervention for bilateral transfemoral amputees.
    Lawson BE; Ruhe B; Shultz A; Goldfarb M
    IEEE Trans Biomed Eng; 2015 Apr; 62(4):1042-50. PubMed ID: 25014950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survey of transfemoral amputee experience and priorities for the user-centered design of powered robotic transfemoral prostheses.
    Fanciullacci C; McKinney Z; Monaco V; Milandri G; Davalli A; Sacchetti R; Laffranchi M; De Michieli L; Baldoni A; Mazzoni A; Paternò L; Rosini E; Reale L; Trecate F; Crea S; Vitiello N; Gruppioni E
    J Neuroeng Rehabil; 2021 Dec; 18(1):168. PubMed ID: 34863213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vision-aided grasp classification: design and evaluation of compact CNN for prosthetic hands.
    Sharma U; Vasamsetti S; Chander SA; Datta B
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38697026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolving the effect of wrist position on myoelectric pattern recognition control.
    Adewuyi AA; Hargrove LJ; Kuiken TA
    J Neuroeng Rehabil; 2017 May; 14(1):39. PubMed ID: 28472991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis.
    Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of standing and sitting phases based on in-socket piezoelectric sensors in a transfemoral amputee.
    Yahya T; Hamzaid NA; Ali S; Jasni F; Shasmin HN
    Biomed Tech (Berl); 2020 Oct; 65(5):567-576. PubMed ID: 32459189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of prosthetic alignment on the stump temperature and ground reaction forces during gait in transfemoral amputees.
    Cárdenas AM; Uribe J; Font-Llagunes JM; Hernández AM; Plata JA
    Gait Posture; 2022 Jun; 95():76-83. PubMed ID: 35461047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Source selection for real-time user intent recognition toward volitional control of artificial legs.
    Fan Zhang ; He Huang
    IEEE J Biomed Health Inform; 2013 Sep; 17(5):907-14. PubMed ID: 25055369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive control of powered transfemoral prostheses based on adaptive dynamic programming.
    Yue Wen ; Ming Liu ; Si J; He Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5071-5074. PubMed ID: 28269408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.