These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34653001)

  • 1. Adaptive Reset Techniques for Haptic Retargeted Interaction.
    Matthews BJ; Thomas BH; Von Itzstein GS; Smith RT
    IEEE Trans Vis Comput Graph; 2023 Feb; 29(2):1478-1490. PubMed ID: 34653001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proxy Importance Based Haptic Retargeting With Multiple Props in VR.
    Liu Z; Wu J; Wang L; Li X; Im SK
    IEEE Trans Vis Comput Graph; 2024 Apr; PP():. PubMed ID: 38652614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining Dynamic Passive Haptics and Haptic Retargeting for Enhanced Haptic Feedback in Virtual Reality.
    Zenner A; Ullmann K; Kruger A
    IEEE Trans Vis Comput Graph; 2021 May; 27(5):2627-2637. PubMed ID: 33750705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enabling Predictive Redirection Reset Based on Virtual-Real Spatial Probability Density Distributions.
    Li H; Fan L
    IEEE Trans Vis Comput Graph; 2024 Jun; PP():. PubMed ID: 38837916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exodex Adam-A Reconfigurable Dexterous Haptic User Interface for the Whole Hand.
    Lii NY; Pereira A; Dietl J; Stillfried G; Schmidt A; Beik-Mohammadi H; Baker T; Maier A; Pleintinger B; Chen Z; Elawad A; Mentzer L; Pineault A; Reisich P; Albu-Schäffer A
    Front Robot AI; 2021; 8():716598. PubMed ID: 35309724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MARR : A Multi-Agent Reinforcement Resetter for Redirected Walking.
    Lee HJ; Jeon SB; Cho YH; Lee IK
    IEEE Trans Vis Comput Graph; 2024 Feb; PP():. PubMed ID: 38381627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive Optimization Algorithm for Resetting Techniques in Obstacle-Ridden Environments.
    Zhang SH; Chen CH; Zheng F; Yang YL; Hu SM
    IEEE Trans Vis Comput Graph; 2023 Apr; 29(4):2080-2092. PubMed ID: 34982685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visuo-Haptic Mixed Reality with Unobstructed Tool-Hand Integration.
    Cosco F; Garre C; Bruno F; Muzzupappa M; Otaduy MA
    IEEE Trans Vis Comput Graph; 2013 Jan; 19(1):159-72. PubMed ID: 22508901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-located haptic interaction for virtual USG exploration.
    Emanuele E; Filippo F; Alessandro A; Avizzano CA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1548-51. PubMed ID: 26736567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Overview of Wearable Haptic Technologies and Their Performance in Virtual Object Exploration.
    van Wegen M; Herder JL; Adelsberger R; Pastore-Wapp M; van Wegen EEH; Bohlhalter S; Nef T; Krack P; Vanbellingen T
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Making Resets away from Targets: POI aware Redirected Walking.
    Xu SZ; Liu TQ; Liu JH; Zollmann S; Zhang SH
    IEEE Trans Vis Comput Graph; 2022 Nov; 28(11):3778-3787. PubMed ID: 36074875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transferable Virtual-Physical Environmental Alignment With Redirected Walking.
    Wang M; Chen ZY; Cai WC; Steinicke F
    IEEE Trans Vis Comput Graph; 2024 Mar; 30(3):1696-1709. PubMed ID: 36417720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Wearable Haptic Systems for the Fingers in Augmented Reality Applications.
    Maisto M; Pacchierotti C; Chinello F; Salvietti G; De Luca A; Prattichizzo D
    IEEE Trans Haptics; 2017; 10(4):511-522. PubMed ID: 28391207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating Remapped Physical Reach for Hand Interactions with Passive Haptics in Virtual Reality.
    Han DT; Suhail M; Ragan ED
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1467-1476. PubMed ID: 29543165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ascending and Descending in Virtual Reality: Simple and Safe System Using Passive Haptics.
    Nagao R; Matsumoto K; Narumi T; Tanikawa T; Hirose M
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1584-1593. PubMed ID: 29543176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving Haptic Response for Contextual Human Robot Interaction.
    Mugisha S; Guda VK; Chevallereau C; Zoppi M; Molfino R; Chablat D
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haptic interfaces for virtual environments: perceived instability and force constancy in haptic sensing of virtual surfaces.
    Tan HZ
    Can J Exp Psychol; 2007 Sep; 61(3):265-75. PubMed ID: 17974320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Usability, acceptance, and educational usefulness study of a new haptic operative dentistry virtual reality simulator.
    Rodrigues P; Esteves A; Botelho J; Machado V; Zagalo C; Zorzal ER; Mendes JJ; Lopes DS
    Comput Methods Programs Biomed; 2022 Jun; 221():106831. PubMed ID: 35544961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A survey on bimanual haptic interaction.
    Talvas A; Marchal M; Lecuyer A
    IEEE Trans Haptics; 2014; 7(3):285-300. PubMed ID: 25248213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wearable Haptic Device Presenting Sensations of Fingertips to the Forearm.
    Moriyama T; Kajimoto H
    IEEE Trans Haptics; 2022; 15(1):91-96. PubMed ID: 35077369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.