These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 34653297)
1. Temperature sensitivity of anaerobic methane oxidation versus methanogenesis in paddy soil: Implications for the CH Fan L; Dippold MA; Thiel V; Ge T; Wu J; Kuzyakov Y; Dorodnikov M Glob Chang Biol; 2022 Jan; 28(2):654-664. PubMed ID: 34653297 [TBL] [Abstract][Full Text] [Related]
2. Carbon availability and microbial activity manipulate the temperature sensitivity of anaerobic degradation in a paddy soil profile. Su R; Wu X; Hu J; Li H; Xiao H; Zhao J; Hu R Environ Res; 2024 Jul; 252(Pt 1):118453. PubMed ID: 38341070 [TBL] [Abstract][Full Text] [Related]
3. The anaerobic oxidation of methane in paddy soil by ferric iron and nitrate, and the microbial communities involved. Luo D; Meng X; Zheng N; Li Y; Yao H; Chapman SJ Sci Total Environ; 2021 Sep; 788():147773. PubMed ID: 34029806 [TBL] [Abstract][Full Text] [Related]
4. Coupled anaerobic methane oxidation and metal reduction in soil under elevated CO Xu C; Zhang N; Zhang K; Li S; Xia Q; Xiao J; Liang M; Lei W; He J; Chen G; Ge C; Zheng X; Zhu J; Hu S; Koide RT; Firestone MK; Cheng L Glob Chang Biol; 2023 Aug; 29(16):4670-4685. PubMed ID: 37221551 [TBL] [Abstract][Full Text] [Related]
5. Equal importance of humic acids and nitrate in driving anaerobic oxidation of methane in paddy soils. Bai Y; Wang Y; Shen L; Shang B; Ji Y; Ren B; Yang W; Yang Y; Ma Z; Feng Z Sci Total Environ; 2024 Feb; 912():169311. PubMed ID: 38103608 [TBL] [Abstract][Full Text] [Related]
6. Ubiquitous and significant anaerobic oxidation of methane in freshwater lake sediments. Martinez-Cruz K; Sepulveda-Jauregui A; Casper P; Anthony KW; Smemo KA; Thalasso F Water Res; 2018 Nov; 144():332-340. PubMed ID: 30053624 [TBL] [Abstract][Full Text] [Related]
7. Stoichiometry and temperature sensitivity of methanogenesis and CO2 production from saturated polygonal tundra in Barrow, Alaska. Roy Chowdhury T; Herndon EM; Phelps TJ; Elias DA; Gu B; Liang L; Wullschleger SD; Graham DE Glob Chang Biol; 2015 Feb; 21(2):722-37. PubMed ID: 25308891 [TBL] [Abstract][Full Text] [Related]
8. Anaerobic oxidation of methane in terrestrial wetlands: The rate, identity and metabolism. Zhao Q; Lu Y Sci Total Environ; 2023 Dec; 902():166049. PubMed ID: 37543312 [TBL] [Abstract][Full Text] [Related]
9. [Effect of gradual increase of atmospheric CO Huang HC; Jin JH; Shen LD; Tian MH; Liu X; Yang WT; Hu ZH Ying Yong Sheng Tai Xue Bao; 2022 Sep; 33(9):2441-2449. PubMed ID: 36131660 [TBL] [Abstract][Full Text] [Related]
10. Metabolic potential of anaerobic methane oxidizing archaea for a broad spectrum of electron acceptors. Glodowska M; Welte CU; Kurth JM Adv Microb Physiol; 2022; 80():157-201. PubMed ID: 35489791 [TBL] [Abstract][Full Text] [Related]
11. Increased suppression of methane production by humic substances in response to warming in anoxic environments. Tan W; Jia Y; Huang C; Zhang H; Li D; Zhao X; Wang G; Jiang J; Xi B J Environ Manage; 2018 Jan; 206():602-606. PubMed ID: 29132082 [TBL] [Abstract][Full Text] [Related]
12. The thermal response of soil microbial methanogenesis decreases in magnitude with changing temperature. Chen H; Zhu T; Li B; Fang C; Nie M Nat Commun; 2020 Nov; 11(1):5733. PubMed ID: 33184291 [TBL] [Abstract][Full Text] [Related]
13. Rate of warming affects temperature sensitivity of anaerobic peat decomposition and greenhouse gas production. Sihi D; Inglett PW; Gerber S; Inglett KS Glob Chang Biol; 2018 Jan; 24(1):e259-e274. PubMed ID: 28746792 [TBL] [Abstract][Full Text] [Related]
14. Soil nitrogen substances and denitrifying communities regulate the anaerobic oxidation of methane in wetlands of Yellow River Delta, China. Wang Z; Li K; Shen X; Yan F; Zhao X; Xin Y; Ji L; Xiang Q; Xu X; Li D; Ran J; Xu X; Chen Q Sci Total Environ; 2023 Jan; 857(Pt 2):159439. PubMed ID: 36252671 [TBL] [Abstract][Full Text] [Related]
15. Methane Production Is More Sensitive to Temperature Increase than Aerobic and Anaerobic Methane Oxidation in Chinese Paddy Soils. Yang WT; Agathokleous E; Wu JH; Chen HY; Wu RJ; Huang HC; Ren BJ; Wen SL; Shen LD; Wang WQ Environ Sci Technol; 2024 Oct; 58(42):18723-18732. PubMed ID: 39396191 [TBL] [Abstract][Full Text] [Related]
16. Anaerobic Methane Oxidation Driven by Microbial Reduction of Natural Organic Matter in a Tropical Wetland. Valenzuela EI; Prieto-Davó A; López-Lozano NE; Hernández-Eligio A; Vega-Alvarado L; Juárez K; García-González AS; López MG; Cervantes FJ Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28341676 [TBL] [Abstract][Full Text] [Related]
17. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Yvon-Durocher G; Allen AP; Bastviken D; Conrad R; Gudasz C; St-Pierre A; Thanh-Duc N; del Giorgio PA Nature; 2014 Mar; 507(7493):488-91. PubMed ID: 24670769 [TBL] [Abstract][Full Text] [Related]
18. Anaerobic primed CO Liu Q; Li Y; Liu S; Gao W; Shen J; Zhang G; Xu H; Zhu Z; Ge T; Wu J Sci Total Environ; 2022 Feb; 808():151911. PubMed ID: 34871686 [TBL] [Abstract][Full Text] [Related]
19. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog. Gill AL; Giasson MA; Yu R; Finzi AC Glob Chang Biol; 2017 Dec; 23(12):5398-5411. PubMed ID: 28675635 [TBL] [Abstract][Full Text] [Related]
20. Anaerobic methane oxidation is quantitatively important in deeper peat layers of boreal peatlands: Evidence from anaerobic incubations, in situ stable isotopes depth profiles, and microbial communities. Sabrekov AF; Semenov MV; Terentieva IE; Krasnov GS; Kharitonov SL; Glagolev MV; Litti YV Sci Total Environ; 2024 Mar; 916():170213. PubMed ID: 38278226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]