These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 34653297)
21. Iron-based passivator mitigates the coupling process of anaerobic methane oxidation and arsenate reduction in paddy soils. Yang J; Zou L; Zheng L; Yuan Z; Huang K; Gustave W; Shi L; Tang X; Liu X; Xu J Environ Pollut; 2022 Nov; 313():120182. PubMed ID: 36152707 [TBL] [Abstract][Full Text] [Related]
22. [Effects of rice plants on methane emission from paddy fields]. Jia Z; Cai Z Ying Yong Sheng Tai Xue Bao; 2003 Nov; 14(11):2049-53. PubMed ID: 14997675 [TBL] [Abstract][Full Text] [Related]
23. Enhanced anaerobic oxidation of methane with the coexistence of iron oxides and sulfate fertilizer in paddy soil. He Z; Shen J; Zhu Y; Feng J; Pan X Chemosphere; 2023 Jul; 329():138623. PubMed ID: 37030346 [TBL] [Abstract][Full Text] [Related]
24. Effects of land use conversion and fertilization on CH Liu H; Liu G; Li Y; Wu X; Liu D; Dai X; Xu M; Yang F Environ Sci Pollut Res Int; 2016 Oct; 23(20):20269-20280. PubMed ID: 27447473 [TBL] [Abstract][Full Text] [Related]
25. Stable isotopes reveal widespread anaerobic methane oxidation across latitude and peatland type. Gupta V; Smemo KA; Yavitt JB; Fowle D; Branfireun B; Basiliko N Environ Sci Technol; 2013 Aug; 47(15):8273-9. PubMed ID: 23822884 [TBL] [Abstract][Full Text] [Related]
26. Synergistic effects of warming and humic substances on driving arsenic reduction and methanogenesis in flooded paddy soil. Hemmat-Jou MH; Gao R; Chen G; Liang Y; Li F; Fang L J Hazard Mater; 2024 Sep; 476():134947. PubMed ID: 38908180 [TBL] [Abstract][Full Text] [Related]
27. Enhancement of hydrogenotrophic methanogenesis for methane production by nano zero-valent iron in soils. Peng W; Lu J; Kuang J; Tang R; Guan F; Xie K; Zhou L; Yuan Y Environ Res; 2024 Apr; 247():118232. PubMed ID: 38262517 [TBL] [Abstract][Full Text] [Related]
28. Long-term effects of soluble and insoluble ferric irons on anaerobic oxidation of methane in paddy soil. He Z; Xu Y; Zhu Y; Feng J; Zhang D; Pan X Chemosphere; 2023 Mar; 317():137901. PubMed ID: 36669540 [TBL] [Abstract][Full Text] [Related]
29. Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. Martinez-Cruz K; Leewis MC; Herriott IC; Sepulveda-Jauregui A; Anthony KW; Thalasso F; Leigh MB Sci Total Environ; 2017 Dec; 607-608():23-31. PubMed ID: 28686892 [TBL] [Abstract][Full Text] [Related]
30. Methane-associated micro-ecological processes crucially improve the self-purification of lindane-polluted paddy soil. Yuan J; Shentu J; Feng J; Lu Z; Xu J; He Y J Hazard Mater; 2021 Apr; 407():124839. PubMed ID: 33352426 [TBL] [Abstract][Full Text] [Related]
31. Responses of methane production and methanogenic pathways to polystyrene nanoplastics exposure in paddy soil. Lu J; Hou R; Peng W; Guan F; Yuan Y J Hazard Mater; 2024 Mar; 465():133197. PubMed ID: 38113731 [TBL] [Abstract][Full Text] [Related]
32. The influence of soil temperature, methanogens and methanotrophs on methane emissions from cold waterlogged paddy fields. Xu X; Zhang M; Xiong Y; Yuan J; Shaaban M; Zhou W; Hu R J Environ Manage; 2020 Jun; 264():110421. PubMed ID: 32217313 [TBL] [Abstract][Full Text] [Related]
33. Alternating Wet-Dry Cycles Rather than Sulfate Fertilization Control Pathways of Methanogenesis and Methane Turnover in Rice Straw-Amended Paddy Soil. Liu Q; Romani M; Wang J; Planer-Friedrich B; Pausch J; Dorodnikov M Environ Sci Technol; 2021 Sep; 55(17):12075-12083. PubMed ID: 34409832 [TBL] [Abstract][Full Text] [Related]
34. Arsenic Reduces Methane Emissions from Paddy Soils: Insights from Continental Investigation and Laboratory Incubations. Jiang OY; Zhang SY; Zhao XD; Liu ZT; Kappler A; Xu JM; Tang XJ Environ Sci Technol; 2024 Oct; 58(40):17685-17694. PubMed ID: 39314094 [TBL] [Abstract][Full Text] [Related]
35. Contrasting effects of EDTA applications on the fluxes of methane and nitrous oxide emissions from straw-treated rice paddy soils. Pramanik P; Kim PJ J Sci Food Agric; 2017 Jan; 97(1):278-283. PubMed ID: 27010126 [TBL] [Abstract][Full Text] [Related]
36. Paddy soil drainage influences residue carbon contribution to methane emissions. Tariq A; Jensen LS; Sander BO; de Tourdonnet S; Ambus PL; Thanh PH; Trinh MV; de Neergaard A J Environ Manage; 2018 Nov; 225():168-176. PubMed ID: 30119009 [TBL] [Abstract][Full Text] [Related]
37. Effects of antimony on anaerobic methane oxidization and microbial community in an antimony-contaminated paddy soil: A microcosm study. Zhang M; Lu G; Li Z; Xu F; Yang N; Sun X; Xu R; Sun W Sci Total Environ; 2021 Aug; 784():147239. PubMed ID: 34088025 [TBL] [Abstract][Full Text] [Related]
38. Effects of freeze-thaw cycles on methanogenic hydrocarbon degradation: Experiment and modeling. Ramezanzadeh M; Slowinski S; Rezanezhad F; Murr K; Lam C; Smeaton C; Alibert C; Vandergriendt M; Van Cappellen P Chemosphere; 2023 Jun; 325():138405. PubMed ID: 36931401 [TBL] [Abstract][Full Text] [Related]
39. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming. Tveit AT; Urich T; Frenzel P; Svenning MM Proc Natl Acad Sci U S A; 2015 May; 112(19):E2507-16. PubMed ID: 25918393 [TBL] [Abstract][Full Text] [Related]
40. Synchronous response of arsenic methylation and methanogenesis in paddy soils with rice straw amendment. Zhai W; Ma Y; Yang S; Gustave W; Zhao T; Hashmi MZ; Pan X; Tang X J Hazard Mater; 2023 Mar; 445():130380. PubMed ID: 36444805 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]