BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 34653624)

  • 21. Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products.
    Shah MM; Liang Y; Cheng JJ; Daroch M
    Front Plant Sci; 2016; 7():531. PubMed ID: 27200009
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of astaxanthin production in Haematococcus pluvialis using zinc oxide nanoparticles.
    Nasri N; Keyhanfar M; Behbahani M; Dini G
    J Biotechnol; 2021 Dec; 342():72-78. PubMed ID: 34673120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrasonic Treatment Enhanced Astaxanthin Production of Haematococcus pluvialis.
    Park YH; Park J; Choi JS; Kim HS; Choi JS; Choi YE
    J Microbiol; 2023 Jun; 61(6):633-639. PubMed ID: 37310559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus.
    Kim DY; Vijayan D; Praveenkumar R; Han JI; Lee K; Park JY; Chang WS; Lee JS; Oh YK
    Bioresour Technol; 2016 Jan; 199():300-310. PubMed ID: 26342788
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of photorespiration during astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae).
    Zhang C; Zhang L; Liu J
    Plant Physiol Biochem; 2016 Oct; 107():75-81. PubMed ID: 27258571
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sodium chloride stimulates the biomass and astaxanthin production by Haematococcus pluvialis via a two-stage cultivation strategy.
    Li Q; You J; Qiao T; Zhong DB; Yu X
    Bioresour Technol; 2022 Jan; 344(Pt A):126214. PubMed ID: 34715336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae).
    Chen G; Wang B; Han D; Sommerfeld M; Lu Y; Chen F; Hu Q
    Plant J; 2015 Jan; 81(1):95-107. PubMed ID: 25353310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina.
    Rammuni MN; Ariyadasa TU; Nimarshana PHV; Attalage RA
    Food Chem; 2019 Mar; 277():128-134. PubMed ID: 30502128
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Supercritical Carbon Dioxide Extraction of Astaxanthin, Lutein, and Fatty Acids from
    Sanzo GD; Mehariya S; Martino M; Larocca V; Casella P; Chianese S; Musmarra D; Balducchi R; Molino A
    Mar Drugs; 2018 Sep; 16(9):. PubMed ID: 30217068
    [No Abstract]   [Full Text] [Related]  

  • 30. Enhanced astaxanthin production of Haematococcus pluvialis strains induced salt and high light resistance with gamma irradiation.
    Yang HE; Yu BS; Sim SJ
    Bioresour Technol; 2023 Mar; 372():128651. PubMed ID: 36682476
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An efficient method for extraction of astaxanthin from green alga Haematococcus pluvialis.
    Sarada R; Vidhyavathi R; Usha D; Ravishankar GA
    J Agric Food Chem; 2006 Oct; 54(20):7585-8. PubMed ID: 17002425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exogenous arginine promotes the coproduction of biomass and astaxanthin under high-light conditions in Haematococcus pluvialis.
    Acheampong A; Wang R; Elsherbiny SM; Bondzie-Quaye P; Huang Q
    Bioresour Technol; 2024 Feb; 393():130001. PubMed ID: 37956949
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unveiling the underlying molecular basis of astaxanthin accumulation in Haematococcus through integrative metabolomic-transcriptomic analysis.
    Hoys C; Romero-Losada AB; Del Río E; Guerrero MG; Romero-Campero FJ; García-González M
    Bioresour Technol; 2021 Jul; 332():125150. PubMed ID: 33878543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancement of astaxanthin production, recovery, and bio-accessibility in Haematococcus pluvialis through taurine-mediated inhibition of secondary cell wall formation under high light conditions.
    Zhang L; Hu T; Yao S; Hu C; Xing H; Liu K; Sun X; Xu N
    Bioresour Technol; 2023 Dec; 389():129802. PubMed ID: 37783237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The associative induction of succinic acid and hydrogen sulfide for high-producing biomass, astaxanthin and lipids in Haematococcus pluvialis.
    Yu C; Wang HP; Yu X
    Bioresour Technol; 2022 Aug; 358():127397. PubMed ID: 35636672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A strategy for promoting astaxanthin accumulation in Haematococcus pluvialis by 1-aminocyclopropane-1-carboxylic acid application.
    Lee C; Choi YE; Yun YS
    J Biotechnol; 2016 Oct; 236():120-7. PubMed ID: 27544287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The combination of uridine and nitrogen-deprivation promotes the efficient formation of astaxanthin-rich motile cells in Haematococcus pluvialis.
    Xing H; Sun X; Xu N; Su X; Qin Y; Zhang L; Liu K; Li M; Hu C
    Bioresour Technol; 2024 Feb; 393():130150. PubMed ID: 38049016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture.
    Del Río E; Acién FG; García-Malea MC; Rivas J; Molina-Grima E; Guerrero MG
    Biotechnol Bioeng; 2005 Sep; 91(7):808-15. PubMed ID: 15937954
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Research of Fluridone's Effects on Growth and Pigment Accumulation of
    Sun J; Zan J; Zang X
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328543
    [No Abstract]   [Full Text] [Related]  

  • 40. Astaxanthin from microalgae: A review on structure, biosynthesis, production strategies and application.
    Debnath T; Bandyopadhyay TK; Vanitha K; Bobby MN; Nath Tiwari O; Bhunia B; Muthuraj M
    Food Res Int; 2024 Jan; 176():113841. PubMed ID: 38163732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.