BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 34653868)

  • 1. Conversion of plastic waste into fuels: A critical review.
    Li N; Liu H; Cheng Z; Yan B; Chen G; Wang S
    J Hazard Mater; 2022 Feb; 424(Pt B):127460. PubMed ID: 34653868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils.
    Breyer S; Mekhitarian L; Rimez B; Haut B
    Waste Manag; 2017 Feb; 60():363-374. PubMed ID: 28063835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-stage thermal pyrolysis of plastic solid waste: Set-up and operative conditions investigation for gaseous fuel production.
    Marchetti L; Guastaferro M; Annunzi F; Tognotti L; Nicolella C; Vaccari M
    Waste Manag; 2024 Apr; 179():77-86. PubMed ID: 38461626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perspectives on Thermochemical Recycling of End-of-Life Plastic Wastes to Alternative Fuels.
    Nanda S; Sarker TR; Kang K; Li D; Dalai AK
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermochemical Conversion of Plastic Waste into Fuels, Chemicals, and Value-Added Materials: A Critical Review and Outlooks.
    Yang RX; Jan K; Chen CT; Chen WT; Wu KC
    ChemSusChem; 2022 Jun; 15(11):e202200171. PubMed ID: 35349769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advancements in Pyrolysis of Halogen-Containing Plastics for Resource Recovery and Halogen Upcycling: A State-of-the-Art Review.
    Ma C; Kumagai S; Saito Y; Yoshioka T; Huang X; Shao Y; Ran J; Sun L
    Environ Sci Technol; 2024 Jan; 58(3):1423-1440. PubMed ID: 38197317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of fractionated drop-in liquid fuel of plastic wastes from a commercial pyrolysis plant.
    Lee D; Nam H; Wang S; Kim H; Kim JH; Won Y; Hwang BW; Kim YD; Nam H; Lee KH; Ryu HJ
    Waste Manag; 2021 May; 126():411-422. PubMed ID: 33836392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review.
    Papari S; Bamdad H; Berruti F
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.
    Gug J; Cacciola D; Sobkowicz MJ
    Waste Manag; 2015 Jan; 35():283-92. PubMed ID: 25453320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrolytic conversion of waste plastics to energy products: A review on yields, properties, and production costs.
    Faisal F; Rasul MG; Jahirul MI; Schaller D
    Sci Total Environ; 2023 Feb; 861():160721. PubMed ID: 36496020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An energy-saving and environment-friendly technology for debromination of plastic waste: Novel models of heat transfer and movement behavior of bromine.
    Zhu J; Huang T; Huang Z; Qin B; Tang Y; Ruan J; Xu Z
    J Hazard Mater; 2022 Jan; 421():126814. PubMed ID: 34396969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impervious and influence in the liquid fuel production from municipal plastic waste through thermo-chemical biomass conversion technologies - A review.
    Banu JR; Sharmila VG; Ushani U; Amudha V; Kumar G
    Sci Total Environ; 2020 May; 718():137287. PubMed ID: 32086085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic.
    Harussani MM; Sapuan SM; Rashid U; Khalina A; Ilyas RA
    Sci Total Environ; 2022 Jan; 803():149911. PubMed ID: 34525745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Aspen plus process simulation model for exploring the feasibility and profitability of pyrolysis process for plastic waste management.
    Hasan MM; Rasul MG; Jahirul MI; Sattar MA
    J Environ Manage; 2024 Mar; 355():120557. PubMed ID: 38460332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW).
    Al-Salem SM; Antelava A; Constantinou A; Manos G; Dutta A
    J Environ Manage; 2017 Jul; 197():177-198. PubMed ID: 28384612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production and utilization of pyrolysis oil from solidplastic wastes: A review on pyrolysis process and influence of reactors design.
    Sekar M; Ponnusamy VK; Pugazhendhi A; Nižetić S; Praveenkumar TR
    J Environ Manage; 2022 Jan; 302(Pt B):114046. PubMed ID: 34775338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    J Environ Manage; 2019 Jun; 239():395-406. PubMed ID: 30928634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disposal of plastic mulching film through CO
    Jung JM; Cho SH; Jung S; Lin KA; Chen WH; Tsang YF; Kwon EE
    J Hazard Mater; 2022 May; 430():128454. PubMed ID: 35168100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental study on usage of plastic oil and B20 algae biodiesel blend as substitute fuel to diesel engine.
    Ramesha DK; Kumara GP; Lalsaheb ; Mohammed AV; Mohammad HA; Kasma MA
    Environ Sci Pollut Res Int; 2016 May; 23(10):9432-9. PubMed ID: 26695415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Waste to energy: An experimental study of utilizing the agricultural residue, MSW, and e-waste available in Bangladesh for pyrolysis conversion.
    Islam MK; Khatun MS; Arefin MA; Islam MR; Hassan M
    Heliyon; 2021 Dec; 7(12):e08530. PubMed ID: 34917811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.