These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 34654124)
41. High-temperature ratchets driven by deterministic and stochastic fluctuations. Rozenbaum VM; Shapochkina IV; Teranishi Y; Trakhtenberg LI Phys Rev E; 2019 Jan; 99(1-1):012103. PubMed ID: 30780357 [TBL] [Abstract][Full Text] [Related]
42. Detecting the maximum likelihood transition path from data of stochastic dynamical systems. Dai M; Gao T; Lu Y; Zheng Y; Duan J Chaos; 2020 Nov; 30(11):113124. PubMed ID: 33261328 [TBL] [Abstract][Full Text] [Related]
43. The fluctuation-dissipation theorem for stochastic kinetics--implications on genetic regulations. Yan CC; Hsu CP J Chem Phys; 2013 Dec; 139(22):224109. PubMed ID: 24329058 [TBL] [Abstract][Full Text] [Related]
44. Using machine learning to predict statistical properties of non-stationary dynamical processes: System climate,regime transitions, and the effect of stochasticity. Patel D; Canaday D; Girvan M; Pomerance A; Ott E Chaos; 2021 Mar; 31(3):033149. PubMed ID: 33810745 [TBL] [Abstract][Full Text] [Related]
45. Time Series Analysis of the Lecca P; Mura I; Re A; Barker GC; Ihekwaba AE Front Microbiol; 2016; 7():1760. PubMed ID: 27872618 [TBL] [Abstract][Full Text] [Related]
46. Exact Response Theory for Time-Dependent and Stochastic Perturbations. Iannella L; Rondoni L Entropy (Basel); 2023 Dec; 26(1):. PubMed ID: 38275491 [TBL] [Abstract][Full Text] [Related]
47. Fluctuation-dissipation relations for Markov processes. Diezemann G Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011104. PubMed ID: 16089934 [TBL] [Abstract][Full Text] [Related]
48. Exploring a noisy van der Pol type oscillator with a stochastic approach. Yuan R; Wang X; Ma Y; Yuan B; Ao P Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062109. PubMed ID: 23848629 [TBL] [Abstract][Full Text] [Related]
49. Dissipation production in a closed two-level quantum system as a test of the irreversibility of the dynamics. Clarke CL; Ford IJ Phys Rev E; 2023 Jul; 108(1-1):014129. PubMed ID: 37583166 [TBL] [Abstract][Full Text] [Related]
51. Brain rhythm bursts are enhanced by multiplicative noise. Powanwe AS; Longtin A Chaos; 2021 Jan; 31(1):013117. PubMed ID: 33754759 [TBL] [Abstract][Full Text] [Related]
52. Stochastic dynamo model for subcritical transition. Fedotov S; Bashkirtseva I; Ryashko L Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066307. PubMed ID: 16906976 [TBL] [Abstract][Full Text] [Related]
53. Parameter estimation of dynamical systems via a chaotic ant swarm. Peng H; Li L; Yang Y; Liu F Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016207. PubMed ID: 20365446 [TBL] [Abstract][Full Text] [Related]
54. Stochastic bifurcations in a bistable Duffing-Van der Pol oscillator with colored noise. Xu Y; Gu R; Zhang H; Xu W; Duan J Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056215. PubMed ID: 21728638 [TBL] [Abstract][Full Text] [Related]
55. From equilibrium to steady-state dynamics after switch-on of shear. Krüger M; Weysser F; Voigtmann T Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061506. PubMed ID: 20866424 [TBL] [Abstract][Full Text] [Related]
56. Consequences of deterministic and random dynamics for the course of affective disorders. Huber MT; Braun HA; Krieg JC Biol Psychiatry; 1999 Jul; 46(2):256-62. PubMed ID: 10418701 [TBL] [Abstract][Full Text] [Related]
57. Transport and entropy production due to chaos or turbulence. Mori H; Fujisaka H Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026302. PubMed ID: 11308572 [TBL] [Abstract][Full Text] [Related]
58. Reduced α-stable dynamics for multiple time scale systems forced with correlated additive and multiplicative Gaussian white noise. Thompson WF; Kuske RA; Monahan AH Chaos; 2017 Nov; 27(11):113105. PubMed ID: 29195322 [TBL] [Abstract][Full Text] [Related]
59. Loewner driving force of the interface in the 2-dimensional Ising system as a chaotic dynamical system. Shibasaki Y; Saito M Chaos; 2020 Nov; 30(11):113130. PubMed ID: 33261346 [TBL] [Abstract][Full Text] [Related]
60. On representing noise by deterministic excitations for interpreting the stochastic resonance phenomenon. Sorokin V; Demidov I Philos Trans A Math Phys Eng Sci; 2021 Mar; 379(2192):20200229. PubMed ID: 33455556 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]