These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34654178)

  • 1. Port-Hamiltonian neural networks for learning explicit time-dependent dynamical systems.
    Desai SA; Mattheakis M; Sondak D; Protopapas P; Roberts SJ
    Phys Rev E; 2021 Sep; 104(3-1):034312. PubMed ID: 34654178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hamiltonian neural networks for solving equations of motion.
    Mattheakis M; Sondak D; Dogra AS; Protopapas P
    Phys Rev E; 2022 Jun; 105(6-2):065305. PubMed ID: 35854562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physics-enhanced neural networks learn order and chaos.
    Choudhary A; Lindner JF; Holliday EG; Miller ST; Sinha S; Ditto WL
    Phys Rev E; 2020 Jun; 101(6-1):062207. PubMed ID: 32688545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hamiltonian neural networks with automatic symmetry detection.
    Dierkes E; Offen C; Ober-Blöbaum S; Flaßkamp K
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37276568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Invertible generalized synchronization: A putative mechanism for implicit learning in neural systems.
    Lu Z; Bassett DS
    Chaos; 2020 Jun; 30(6):063133. PubMed ID: 32611103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Overview on Irreversible Port-Hamiltonian Systems.
    Ramirez H; Le Gorrec Y
    Entropy (Basel); 2022 Oct; 24(10):. PubMed ID: 37420498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hamiltonian-Driven Adaptive Dynamic Programming for Continuous Nonlinear Dynamical Systems.
    Yang Y; Wunsch D; Yin Y
    IEEE Trans Neural Netw Learn Syst; 2017 Aug; 28(8):1929-1940. PubMed ID: 28166510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variational integrator graph networks for learning energy-conserving dynamical systems.
    Desai SA; Mattheakis M; Roberts SJ
    Phys Rev E; 2021 Sep; 104(3-2):035310. PubMed ID: 34654151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep neural networks for direct, featureless learning through observation: The case of two-dimensional spin models.
    Mills K; Tamblyn I
    Phys Rev E; 2018 Mar; 97(3-1):032119. PubMed ID: 29776084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density matrix formulation of dynamical systems.
    Das S; Green JR
    Phys Rev E; 2022 Nov; 106(5-1):054135. PubMed ID: 36559452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implicit Regularization and Momentum Algorithms in Nonlinearly Parameterized Adaptive Control and Prediction.
    Boffi NM; Slotine JE
    Neural Comput; 2021 Mar; 33(3):590-673. PubMed ID: 33513321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and Analysis of a Three-Terminal-Memristor-Based Conservative Chaotic System.
    Wang Z; Qi G
    Entropy (Basel); 2021 Jan; 23(1):. PubMed ID: 33406791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General formalism for singly thermostated Hamiltonian dynamics.
    Ramshaw JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052138. PubMed ID: 26651677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of the projection operator formalism to non-hamiltonian dynamics.
    Xing J; Kim KS
    J Chem Phys; 2011 Jan; 134(4):044132. PubMed ID: 21280712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning epidemic threshold in complex networks by Convolutional Neural Network.
    Ni Q; Kang J; Tang M; Liu Y; Zou Y
    Chaos; 2019 Nov; 29(11):113106. PubMed ID: 31779342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physics-incorporated convolutional recurrent neural networks for source identification and forecasting of dynamical systems.
    Saha P; Dash S; Mukhopadhyay S
    Neural Netw; 2021 Dec; 144():359-371. PubMed ID: 34547672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extended Hamiltonian learning on Riemannian manifolds: theoretical aspects.
    Fiori S
    IEEE Trans Neural Netw; 2011 May; 22(5):687-700. PubMed ID: 21427023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning dynamical systems in noise using convolutional neural networks.
    Mukhopadhyay S; Banerjee S
    Chaos; 2020 Oct; 30(10):103125. PubMed ID: 33138462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking control design for fractional order systems: A passivity-based port-Hamiltonian framework.
    Kumar L; Dhillon SS
    ISA Trans; 2023 Jul; 138():1-9. PubMed ID: 36973153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.