These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34654178)

  • 21. Using Lyapunov exponents to predict the onset of chaos in nonlinear oscillators.
    Ryabov VB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016214. PubMed ID: 12241468
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast Hamiltonian chaos: Heat bath without thermodynamic limit.
    Riegert A; Just W; Baba N; Kantz H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066211. PubMed ID: 18233908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GFINNs: GENERIC formalism informed neural networks for deterministic and stochastic dynamical systems.
    Zhang Z; Shin Y; Em Karniadakis G
    Philos Trans A Math Phys Eng Sci; 2022 Aug; 380(2229):20210207. PubMed ID: 35719066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mori-Zwanzig projection operator formalism: Particle-based coarse-grained dynamics of open classical systems far from equilibrium.
    Izvekov S
    Phys Rev E; 2021 Aug; 104(2-1):024121. PubMed ID: 34525637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stabilization of Port Hamiltonian Chaotic Systems with Hidden Attractors by Adaptive Terminal Sliding Mode Control.
    Azar AT; Serrano FE
    Entropy (Basel); 2020 Jan; 22(1):. PubMed ID: 33285897
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Embedding multiple trajectories in simulated recurrent neural networks in a self-organizing manner.
    Liu JK; Buonomano DV
    J Neurosci; 2009 Oct; 29(42):13172-81. PubMed ID: 19846705
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Learning Poisson Systems and Trajectories of Autonomous Systems via Poisson Neural Networks.
    Jin P; Zhang Z; Kevrekidis IG; Karniadakis GE
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):8271-8283. PubMed ID: 35180089
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems.
    Jin P; Zhang Z; Zhu A; Tang Y; Karniadakis GE
    Neural Netw; 2020 Dec; 132():166-179. PubMed ID: 32890788
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational approaches to dissociative chemisorption on metals: towards chemical accuracy.
    Kroes GJ
    Phys Chem Chem Phys; 2021 Apr; 23(15):8962-9048. PubMed ID: 33885053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On chaotic dynamics in "pseudobilliard" Hamiltonian systems with two degrees of freedom.
    Eleonsky VM; Korolev VG; Kulagin NE
    Chaos; 1997 Dec; 7(4):710-730. PubMed ID: 12779697
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamical systems as a level of cognitive analysis of multi-agent learning: Algorithmic foundations of temporal-difference learning dynamics.
    Barfuss W
    Neural Comput Appl; 2022; 34(3):1653-1671. PubMed ID: 35221541
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gradient and Hamiltonian coupled systems on undirected networks.
    Aguiar M; Dias A; Manoel M
    Math Biosci Eng; 2019 May; 16(5):4622-4644. PubMed ID: 31499681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Learning Hamiltonian dynamics with reservoir computing.
    Zhang H; Fan H; Wang L; Wang X
    Phys Rev E; 2021 Aug; 104(2-1):024205. PubMed ID: 34525517
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On learning Hamiltonian systems from data.
    Bertalan T; Dietrich F; Mezić I; Kevrekidis IG
    Chaos; 2019 Dec; 29(12):121107. PubMed ID: 31893645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A neuro-inspired general framework for the evolution of stochastic dynamical systems: Cellular automata, random Boolean networks and echo state networks towards criticality.
    Pontes-Filho S; Lind P; Yazidi A; Zhang J; Hammer H; Mello GBM; Sandvig I; Tufte G; Nichele S
    Cogn Neurodyn; 2020 Oct; 14(5):657-674. PubMed ID: 33014179
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unravelled multilevel transformation networks for predicting sparsely observed spatio-temporal dynamics.
    Saha P; Mukhopadhyay S
    Philos Trans A Math Phys Eng Sci; 2022 Aug; 380(2229):20210198. PubMed ID: 35719071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-Markovian dynamical maps: numerical processing of open quantum trajectories.
    Cerrillo J; Cao J
    Phys Rev Lett; 2014 Mar; 112(11):110401. PubMed ID: 24702332
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI.
    Koppe G; Toutounji H; Kirsch P; Lis S; Durstewitz D
    PLoS Comput Biol; 2019 Aug; 15(8):e1007263. PubMed ID: 31433810
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Harnessing deep neural networks to solve inverse problems in quantum dynamics: machine-learned predictions of time-dependent optimal control fields.
    Wang X; Kumar A; Shelton CR; Wong BM
    Phys Chem Chem Phys; 2020 Oct; 22(40):22889-22899. PubMed ID: 32935687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulating and Predicting Dynamical Systems With Spatial Semantic Pointers.
    Voelker AR; Blouw P; Choo X; Dumont NS; Stewart TC; Eliasmith C
    Neural Comput; 2021 Jul; 33(8):2033-2067. PubMed ID: 34310679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.