These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34654300)

  • 1. Nucleation rates from small scale atomistic simulations and transition state theory.
    Bal KM
    J Chem Phys; 2021 Oct; 155(14):144111. PubMed ID: 34654300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overcoming time scale and finite size limitations to compute nucleation rates from small scale well tempered metadynamics simulations.
    Salvalaglio M; Tiwary P; Maggioni GM; Mazzotti M; Parrinello M
    J Chem Phys; 2016 Dec; 145(21):211925. PubMed ID: 28799374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic analysis of homogeneous droplet nucleation using large-scale molecular dynamics simulations.
    Ayuba S; Suh D; Nomura K; Ebisuzaki T; Yasuoka K
    J Chem Phys; 2018 Jul; 149(4):044504. PubMed ID: 30068205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleation rate isotherms of argon from molecular dynamics simulations.
    Wedekind J; Wölk J; Reguera D; Strey R
    J Chem Phys; 2007 Oct; 127(15):154515. PubMed ID: 17949181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Argon nucleation: bringing together theory, simulations, and experiment.
    Kalikmanov VI; Wölk J; Kraska T
    J Chem Phys; 2008 Mar; 128(12):124506. PubMed ID: 18376942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient dynamical correction of the transition state theory rate estimate for a flat energy barrier.
    Mökkönen H; Ala-Nissila T; Jónsson H
    J Chem Phys; 2016 Sep; 145(9):094901. PubMed ID: 27609008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extending and validating bubble nucleation rate predictions in a Lennard-Jones fluid with enhanced sampling methods and transition state theory.
    Bal KM; Neyts EC
    J Chem Phys; 2022 Nov; 157(18):184113. PubMed ID: 36379788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple improvements to classical bubble nucleation models.
    Tanaka KK; Tanaka H; Angélil R; Diemand J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022401. PubMed ID: 26382410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleation times in the two-dimensional Ising model.
    Brendel K; Barkema GT; van Beijeren H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031601. PubMed ID: 15903437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of some nucleation theories with a nonsharp droplet-vapor interface.
    Napari I; Julin J; Vehkamäki H
    J Chem Phys; 2010 Oct; 133(15):154503. PubMed ID: 20969399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct simulations of homogeneous bubble nucleation: Agreement with classical nucleation theory and no local hot spots.
    Diemand J; Angélil R; Tanaka KK; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052407. PubMed ID: 25493803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular-dynamics simulations of urea nucleation from aqueous solution.
    Salvalaglio M; Perego C; Giberti F; Mazzotti M; Parrinello M
    Proc Natl Acad Sci U S A; 2015 Jan; 112(1):E6-14. PubMed ID: 25492932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A random walk through the dynamics of homogeneous vapor-liquid nucleation.
    Huang DM; Attard P
    J Chem Phys; 2005 May; 122(17):174503. PubMed ID: 15910041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of finite-size effects in cavitation and droplet formation.
    Wilhelmsen Ø; Reguera D
    J Chem Phys; 2015 Feb; 142(6):064703. PubMed ID: 25681931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogeneous nucleation in vapor-liquid phase transition of Lennard-Jones fluids: a density functional theory approach.
    Ghosh S; Ghosh SK
    J Chem Phys; 2011 Jan; 134(2):024502. PubMed ID: 21241115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison between the classical theory predictions and molecular simulation results for heterogeneous nucleation of argon.
    Lauri A; Zapadinsky E; Vehkamäki H; Kulmala M
    J Chem Phys; 2006 Oct; 125(16):164712. PubMed ID: 17092125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-size effects in simulations of nucleation.
    Wedekind J; Reguera D; Strey R
    J Chem Phys; 2006 Dec; 125(21):214505. PubMed ID: 17166031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large scale molecular dynamics simulations of homogeneous nucleation.
    Diemand J; Angélil R; Tanaka KK; Tanaka H
    J Chem Phys; 2013 Aug; 139(7):074309. PubMed ID: 23968094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous nucleation at a wall near a wetting transition: a Monte Carlo test of the classical theory.
    Winter D; Virnau P; Binder K
    J Phys Condens Matter; 2009 Nov; 21(46):464118. PubMed ID: 21715882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A variational approach to nucleation simulation.
    Piaggi PM; Valsson O; Parrinello M
    Faraday Discuss; 2016 Dec; 195():557-568. PubMed ID: 27752683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.