These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34654441)

  • 1. RNA sequencing reveals metabolic and regulatory changes leading to more robust fermentation performance during short-term adaptation of Saccharomyces cerevisiae to lignocellulosic inhibitors.
    van Dijk M; Rugbjerg P; Nygård Y; Olsson L
    Biotechnol Biofuels; 2021 Oct; 14(1):201. PubMed ID: 34654441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutrient-supplemented propagation of Saccharomyces cerevisiae improves its lignocellulose fermentation ability.
    van Dijk M; Mierke F; Nygård Y; Olsson L
    AMB Express; 2020 Aug; 10(1):157. PubMed ID: 32857229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain-dependent variance in short-term adaptation effects of two xylose-fermenting strains of Saccharomyces cerevisiae.
    van Dijk M; Erdei B; Galbe M; Nygård Y; Olsson L
    Bioresour Technol; 2019 Nov; 292():121922. PubMed ID: 31398543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-term adaptation during propagation improves the performance of xylose-fermenting Saccharomyces cerevisiae in simultaneous saccharification and co-fermentation.
    Nielsen F; Tomás-Pejó E; Olsson L; Wallberg O
    Biotechnol Biofuels; 2015; 8():219. PubMed ID: 26697108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae.
    Chen Y; Sheng J; Jiang T; Stevens J; Feng X; Wei N
    Biotechnol Biofuels; 2016; 9():9. PubMed ID: 26766964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors.
    Cunha JT; Aguiar TQ; Romaní A; Oliveira C; Domingues L
    Bioresour Technol; 2015 Sep; 191():7-16. PubMed ID: 25974617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the propagation strategy for obtaining robust Saccharomyces cerevisiae cells that efficiently co-ferment xylose and glucose in lignocellulosic hydrolysates.
    Tomás-Pejó E; Olsson L
    Microb Biotechnol; 2015 Nov; 8(6):999-1005. PubMed ID: 25989314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leveraging Genetic-Background Effects in Saccharomyces cerevisiae To Improve Lignocellulosic Hydrolysate Tolerance.
    Sardi M; Rovinskiy N; Zhang Y; Gasch AP
    Appl Environ Microbiol; 2016 Oct; 82(19):5838-49. PubMed ID: 27451446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae.
    Narayanan V; Sànchez I Nogué V; van Niel EWJ; Gorwa-Grauslund MF
    AMB Express; 2016 Dec; 6(1):59. PubMed ID: 27566648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review.
    Parawira W; Tekere M
    Crit Rev Biotechnol; 2011 Mar; 31(1):20-31. PubMed ID: 20513164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring grape marc as trove for new thermotolerant and inhibitor-tolerant Saccharomyces cerevisiae strains for second-generation bioethanol production.
    Favaro L; Basaglia M; Trento A; Van Rensburg E; García-Aparicio M; Van Zyl WH; Casella S
    Biotechnol Biofuels; 2013 Nov; 6(1):168. PubMed ID: 24286305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress-driven dynamic regulation of multiple tolerance genes improves robustness and productive capacity of Saccharomyces cerevisiae in industrial lignocellulose fermentation.
    Qin L; Dong S; Yu J; Ning X; Xu K; Zhang SJ; Xu L; Li BZ; Li J; Yuan YJ; Li C
    Metab Eng; 2020 Sep; 61():160-170. PubMed ID: 32553944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.
    Hasunuma T; Ismail KSK; Nambu Y; Kondo A
    J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological mechanism of improved tolerance of
    Gu H; Zhu Y; Peng Y; Liang X; Liu X; Shao L; Xu Y; Xu Z; Liu R; Li J
    Biotechnol Biofuels; 2019; 12():268. PubMed ID: 31755875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response mechanisms of Saccharomyces cerevisiae to the stress factors present in lignocellulose hydrolysate and strategies for constructing robust strains.
    Li B; Liu N; Zhao X
    Biotechnol Biofuels Bioprod; 2022 Mar; 15(1):28. PubMed ID: 35292082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flocculation causes inhibitor tolerance in Saccharomyces cerevisiae for second-generation bioethanol production.
    Westman JO; Mapelli V; Taherzadeh MJ; Franzén CJ
    Appl Environ Microbiol; 2014 Nov; 80(22):6908-18. PubMed ID: 25172866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased lignocellulosic inhibitor tolerance of
    Narayanan V; Schelin J; Gorwa-Grauslund M; van Niel EW; Carlquist M
    Biotechnol Biofuels; 2017; 10():114. PubMed ID: 28484514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production.
    Demeke MM; Dumortier F; Li Y; Broeckx T; Foulquié-Moreno MR; Thevelein JM
    Biotechnol Biofuels; 2013 Aug; 6(1):120. PubMed ID: 23971950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic characterization and comparative transcriptomics of evolved Saccharomyces cerevisiae strains with improved tolerance to lignocellulosic derived inhibitors.
    Thompson OA; Hawkins GM; Gorsich SW; Doran-Peterson J
    Biotechnol Biofuels; 2016; 9():200. PubMed ID: 27679668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37.
    Li YC; Mitsumasu K; Gou ZX; Gou M; Tang YQ; Li GY; Wu XL; Akamatsu T; Taguchi H; Kida K
    Appl Microbiol Biotechnol; 2016 Feb; 100(3):1531-1542. PubMed ID: 26603762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.