BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 34655083)

  • 1. A new emittance selection system to maximize beam transmission for low-energy beams in cyclotron-based proton therapy facilities with gantry.
    Maradia V; Meer D; Weber DC; Lomax AJ; Schippers JM; Psoroulas S
    Med Phys; 2021 Dec; 48(12):7613-7622. PubMed ID: 34655083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increase of the transmission and emittance acceptance through a cyclotron-based proton therapy gantry.
    Maradia V; Giovannelli AC; Meer D; Weber DC; Lomax AJ; Schippers JM; Psoroulas S
    Med Phys; 2022 Apr; 49(4):2183-2192. PubMed ID: 35099067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometry optimisation of graphite energy degrader for proton therapy.
    Oponowicz E; Owen HL; Psoroulas S; Meer D
    Phys Med; 2020 Aug; 76():227-235. PubMed ID: 32717702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beam properties within the momentum acceptance of a clinical gantry beamline for proton therapy.
    Giovannelli AC; Maradia V; Meer D; Safai S; Psoroulas S; Togno M; Bula C; Weber DC; Lomax AJ; Fattori G
    Med Phys; 2022 Mar; 49(3):1417-1431. PubMed ID: 35041207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large energy acceptance gantry for proton therapy utilizing superconducting technology.
    Nesteruk KP; Calzolaio C; Meer D; Rizzoglio V; Seidel M; Schippers JM
    Phys Med Biol; 2019 Aug; 64(17):175007. PubMed ID: 31272087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of FLASH proton beams using a track-repeating algorithm.
    Wang Q; Titt U; Mohan R; Guan F; Zhao Y; Yang M; Yepes P
    Med Phys; 2022 Oct; 49(10):6684-6698. PubMed ID: 35900902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams.
    Masood U; Cowan TE; Enghardt W; Hofmann KM; Karsch L; Kroll F; Schramm U; Wilkens JJ; Pawelke J
    Phys Med Biol; 2017 Jul; 62(13):5531-5555. PubMed ID: 28609301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Commissioning and beam characterization of the first gantry-mounted accelerator pencil beam scanning proton system.
    Kang M; Pang D
    Med Phys; 2020 Aug; 47(8):3496-3510. PubMed ID: 31840264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beam characterisation studies of the 62 MeV proton therapy beamline at the Clatterbridge Cancer Centre.
    Yap J; Resta-López J; Kacperek A; Schnuerer R; Jolly S; Boogert S; Welsch C
    Phys Med; 2020 Sep; 77():108-120. PubMed ID: 32823210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of the Dynamic Collimation Monte Carlo simulation package for pencil beam scanning proton therapy.
    Nelson NP; Culberson WS; Hyer DE; Geoghegan TJ; Patwardhan KA; Smith BR; Flynn RT; Yu J; Rana S; Gutiérrez AN; Hill PM
    Med Phys; 2021 Jun; 48(6):3172-3185. PubMed ID: 33740253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements and simulations of boron carbide as degrader material for proton therapy.
    Gerbershagen A; Baumgarten C; Kiselev D; van der Meer R; Risters Y; Schippers M
    Phys Med Biol; 2016 Jul; 61(14):N337-48. PubMed ID: 27351317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel beam optics concept in a particle therapy gantry utilizing the advantages of superconducting magnets.
    Gerbershagen A; Meer D; Schippers JM; Seidel M
    Z Med Phys; 2016 Sep; 26(3):224-37. PubMed ID: 27084590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmarking a GATE/Geant4 Monte Carlo model for proton beams in magnetic fields.
    Padilla-Cabal F; Alejandro Fragoso J; Franz Resch A; Georg D; Fuchs H
    Med Phys; 2020 Jan; 47(1):223-233. PubMed ID: 31661559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-fast pencil beam scanning proton therapy for locally advanced non-small-cell lung cancers: Field delivery within a single breath-hold.
    Maradia V; van de Water S; Meer D; Weber DC; Lomax AJ; Psoroulas S
    Radiother Oncol; 2022 Sep; 174():23-29. PubMed ID: 35788354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Commissioning of a clinical pencil beam scanning proton therapy unit for ultra-high dose rates (FLASH).
    Nesteruk KP; Togno M; Grossmann M; Lomax AJ; Weber DC; Schippers JM; Safai S; Meer D; Psoroulas S
    Med Phys; 2021 Jul; 48(7):4017-4026. PubMed ID: 33963576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of an energy degrader made of B
    Liang Z; Liu K; Liu X; Xiong Y; Qin B
    Rev Sci Instrum; 2019 Aug; 90(8):086101. PubMed ID: 31472668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive Monte Carlo study of out-of-field secondary neutron spectra in a scanned-beam proton therapy gantry room.
    Englbrecht FS; Trinkl S; Mares V; Rühm W; Wielunski M; Wilkens JJ; Hillbrand M; Parodi K
    Z Med Phys; 2021 May; 31(2):215-228. PubMed ID: 33622567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer-assisted beam modeling for particle therapy.
    Fuchs H; Elia A; Resch AF; Kuess P; Lühr A; Vidal M; Grevillot L; Georg D
    Med Phys; 2021 Feb; 48(2):841-851. PubMed ID: 33283910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A predictive algorithm for spot position corrections after fast energy switching in proton pencil beam scanning.
    Psoroulas S; Bula C; Actis O; Weber DC; Meer D
    Med Phys; 2018 Nov; 45(11):4806-4815. PubMed ID: 30273965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sharp dose profiles for high precision proton therapy using strongly focused proton beams.
    Reaz F; Sjobak KN; Malinen E; Edin NFJ; Adli E
    Sci Rep; 2022 Nov; 12(1):18919. PubMed ID: 36344543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.