These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34655453)

  • 1. Tailoring Competitive Adsorption Sites by Oxygen-Vacancy on Cobalt Oxides to Enhance the Electrooxidation of Biomass.
    Lu Y; Liu T; Dong CL; Yang C; Zhou L; Huang YC; Li Y; Zhou B; Zou Y; Wang S
    Adv Mater; 2022 Jan; 34(2):e2107185. PubMed ID: 34655453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the Selective Adsorption Site of Biomass on Co
    Lu Y; Liu T; Dong CL; Huang YC; Li Y; Chen J; Zou Y; Wang S
    Adv Mater; 2021 Feb; 33(8):e2007056. PubMed ID: 33470476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying the Geometric Site Dependence of Spinel Oxides for the Electrooxidation of 5-Hydroxymethylfurfural.
    Lu Y; Dong CL; Huang YC; Zou Y; Liu Z; Liu Y; Li Y; He N; Shi J; Wang S
    Angew Chem Int Ed Engl; 2020 Oct; 59(43):19215-19221. PubMed ID: 32705755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unveiling the Adsorption Behavior and Redox Properties of PtNi Nanowire for Biomass-Derived Molecules Electrooxidation.
    Wu J; Kong Z; Li Y; Lu Y; Zhou P; Wang H; Xu L; Wang S; Zou Y
    ACS Nano; 2022 Dec; 16(12):21518-21526. PubMed ID: 36475597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous-Interface-Enhanced Adsorption of Organic and Hydroxyl for Biomass Electrooxidation.
    Zhou P; Lv X; Tao S; Wu J; Wang H; Wei X; Wang T; Zhou B; Lu Y; Frauenheim T; Fu X; Wang S; Zou Y
    Adv Mater; 2022 Oct; 34(42):e2204089. PubMed ID: 36036562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Platinum Modulates Redox Properties and 5-Hydroxymethylfurfural Adsorption Kinetics of Ni(OH)
    Zhou B; Li Y; Zou Y; Chen W; Zhou W; Song M; Wu Y; Lu Y; Liu J; Wang Y; Wang S
    Angew Chem Int Ed Engl; 2021 Oct; 60(42):22908-22914. PubMed ID: 34405508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-linked α-Ni(OH)
    Liu X; Wang R; Wei M; Wang X; Qiu J; Zhang J; Li S; Chen Y
    J Colloid Interface Sci; 2024 Mar; 657():438-448. PubMed ID: 38061227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Built-in electric field in NiO-CuO heterostructures to regulate the hydroxide adsorption sites for 5-hydroxymethylfurfural electrooxidation assisted hydrogen production.
    Zhu Y; Wei J; Wu J; Chen R; Tsiakaras P; Yin S
    J Colloid Interface Sci; 2024 Nov; 673():301-311. PubMed ID: 38878365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting 5-Hydroxymethylfurfural Electrooxidation by Porous Biochar via Loading Numerous Surface-Exposed Cobalt Phosphonates.
    Xiong Y; Jiang J; Liu Y; Ji X; Chen C; Wang K
    Langmuir; 2024 Jun; 40(22):11450-11459. PubMed ID: 38777791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Operando Forming of Lattice Vacancy Defect in Ultrathin Crumpled NiVW-Layered Metal Hydroxides Nanosheets for Valorization of Biomass.
    Zhang B; Yang Z; Yan C; Xue Z; Mu T
    Small; 2023 Apr; 19(16):e2207236. PubMed ID: 36670073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-valence metal sites induced by heterostructure engineering for promoting 5-hydroxymethylfurfural electrooxidation and hydrogen generation.
    Shang N; Li W; Wu Q; Li H; Wang H; Wang C; Bai G
    J Colloid Interface Sci; 2024 Apr; 659():621-628. PubMed ID: 38198939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Electrooxidation of 5-Hydroxymethylfurfural Using Co-Doped Ni
    Sun Y; Wang J; Qi Y; Li W; Wang C
    Adv Sci (Weinh); 2022 Jun; 9(17):e2200957. PubMed ID: 35426484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorine Induced In Situ Formation of High Valent Nickel Species for Ultra Low Potential Electrooxidation of 5-Hydroxymethylfurfural.
    Zhang B; Li Z; Zhou Y; Yang Z; Xue Z; Mu T
    Small; 2024 Feb; 20(8):e2306663. PubMed ID: 37817371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron Structure Tuned Oxygen Vacancy-Rich AuPd/CeO
    Wei Y; Pan J; Yan X; Mao Y; Zhang Y
    ChemSusChem; 2024 May; 17(9):e202400241. PubMed ID: 38494446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal vacancy-enriched layered double hydroxide for biomass molecule electrooxidation coupled with hydrogen production.
    Song Y; Jiang S; He Y; Wu Y; Wan X; Xie W; Wang J; Li Z; Duan H; Shao M
    Fundam Res; 2024 Jan; 4(1):69-76. PubMed ID: 38933839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vacancy-induced catalytic mechanism for alcohol electrooxidation on nickel-based electrocatalyst.
    Chen W; Shi J; Wu Y; Jiang Y; Huang YC; Zhou W; Liu J; Dong CL; Zou Y; Wang S
    Angew Chem Int Ed Engl; 2024 Jan; 63(4):e202316449. PubMed ID: 38059893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen Vacancy Engineering of Co
    Zhang JJ; Wang HH; Zhao TJ; Zhang KX; Wei X; Jiang ZD; Hirano SI; Li XH; Chen JS
    ChemSusChem; 2017 Jul; 10(14):2875-2879. PubMed ID: 28612461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosting the Electrochemical 5-Hydroxymethylfurfural Oxidation by Balancing the Competitive Adsorption of Organic and OH
    Xiao D; Bao X; Dai D; Gao Y; Si S; Wang Z; Liu Y; Wang P; Zheng Z; Cheng H; Dai Y; Huang B
    Adv Mater; 2023 Nov; 35(45):e2304133. PubMed ID: 37474109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Reconstruction of Sulfate-Terminated Copper Oxide Nanorods for Efficient and Stable 5-Hydroxymethylfurfural Electrooxidation.
    Fan Z; Yang Q; Zhang W; Wen H; Yuan H; He J; Yang HG; Chen Z
    Nano Lett; 2023 Dec; 23(23):11314-11322. PubMed ID: 38018816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal Faces-Tailored Oxygen Vacancy in Au/CeO
    Wei Y; Zhang Y; Chen Y; Wang F; Cao Y; Guan W; Li X
    ChemSusChem; 2022 Jul; 15(13):e202101983. PubMed ID: 34644006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.