These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34655498)

  • 1. Agrobacterium tumefaciens fitness genes involved in the colonization of plant tumors and roots.
    Torres M; Jiquel A; Jeanne E; Naquin D; Dessaux Y; Faure D
    New Phytol; 2022 Jan; 233(2):905-918. PubMed ID: 34655498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of a Transposon Mutant Library in the Pathogen Agrobacterium tumefaciens C58 and Identification of Genes Involved in Gall Niche Exploitation and Colonization.
    Torres M; Gonzalez-Mula A; Naquin D; Faure D
    Methods Mol Biol; 2023; 2605():209-226. PubMed ID: 36520396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biotroph Agrobacterium tumefaciens thrives in tumors by exploiting a wide spectrum of plant host metabolites.
    Gonzalez-Mula A; Lachat J; Mathias L; Naquin D; Lamouche F; Mergaert P; Faure D
    New Phytol; 2019 Apr; 222(1):455-467. PubMed ID: 30447163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycoside Hydrolase Genes Are Required for Virulence of Agrobacterium tumefaciens on
    Mathews SL; Hannah H; Samagaio H; Martin C; Rodriguez-Rassi E; Matthysse AG
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31126942
    [No Abstract]   [Full Text] [Related]  

  • 5. Integrative and deconvolution omics approaches to uncover the Agrobacterium tumefaciens lifestyle in plant tumors.
    Gonzalez-Mula A; Torres M; Faure D
    Plant Signal Behav; 2019; 14(3):e1581562. PubMed ID: 30774017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens.
    Matthysse AG; Marry M; Krall L; Kaye M; Ramey BE; Fuqua C; White AR
    Mol Plant Microbe Interact; 2005 Sep; 18(9):1002-10. PubMed ID: 16167770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attachment to roots and virulence of a chvB mutant of Agrobacterium tumefaciens are temperature sensitive.
    Bash R; Matthysse AG
    Mol Plant Microbe Interact; 2002 Feb; 15(2):160-3. PubMed ID: 11876426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agrobacteria Enhance Plant Defense Against Root-Knot Nematodes on Tomato.
    Lamovšek J; Stare BG; Pleško IM; Širca S; Urek G
    Phytopathology; 2017 Jun; 107(6):681-691. PubMed ID: 28134593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of siaD on Ag-8 to improve resistance to crown gall in grapes and related mechanisms.
    Ni X; Li S; Yuan Y; Chang R; Liu Q; Liu Z; Li Z; Wang Y
    Plant Physiol Biochem; 2024 Oct; 215():108869. PubMed ID: 39142011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. attG and attC mutations of Agrobacterium tumefaciens are dominant negative mutations that block attachment and virulence.
    Matthysse AG; Jaeckel P; Jeter C
    Can J Microbiol; 2008 Apr; 54(4):241-7. PubMed ID: 18388996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Root colonization by Agrobacterium tumefaciens is reduced in cel, attB, attD, and attR mutants.
    Matthysse AG; McMahan S
    Appl Environ Microbiol; 1998 Jul; 64(7):2341-5. PubMed ID: 9647796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological control of crown gall of grapevine, rose, and tomato by nonpathogenic Agrobacterium vitis strain VAR03-1.
    Kawaguchi A; Inoue K; Ichinose Y
    Phytopathology; 2008 Nov; 98(11):1218-25. PubMed ID: 18943411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of the Agrobacterium tumefaciens attR mutation on attachment and root colonization differs between legumes and other dicots.
    Matthysse AG; McMahan S
    Appl Environ Microbiol; 2001 Mar; 67(3):1070-5. PubMed ID: 11229893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants.
    Dandurishvili N; Toklikishvili N; Ovadis M; Eliashvili P; Giorgobiani N; Keshelava R; Tediashvili M; Vainstein A; Khmel I; Szegedi E; Chernin L
    J Appl Microbiol; 2011 Jan; 110(1):341-52. PubMed ID: 21091861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The tomato UV-damaged DNA-binding protein-1 (DDB1) is implicated in pathogenesis-related (PR) gene expression and resistance to Agrobacterium tumefaciens.
    Liu J; Li H; Miao M; Tang X; Giovannoni J; Xiao F; Liu Y
    Mol Plant Pathol; 2012 Feb; 13(2):123-34. PubMed ID: 21726402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of Agrobacterium tumefaciens C58 attachment to Arabidopsis thaliana roots.
    Petrovicheva A; Joyner J; Muth TR
    FEMS Microbiol Lett; 2017 Oct; 364(18):. PubMed ID: 28922840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom.
    Chetty VJ; Ceballos N; Garcia D; Narváez-Vásquez J; Lopez W; Orozco-Cárdenas ML
    Plant Cell Rep; 2013 Feb; 32(2):239-47. PubMed ID: 23099543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic analysis of nonpathogenic Agrobacterium tumefaciens mutants arising in crown gall tumors.
    Bélanger C; Canfield ML; Moore LW; Dion P
    J Bacteriol; 1995 Jul; 177(13):3752-7. PubMed ID: 7601840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agrobacterium tumefaciens-Mediated Transformation of Tomato.
    Van Eck J; Keen P; Tjahjadi M
    Methods Mol Biol; 2019; 1864():225-234. PubMed ID: 30415340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction and analysis of a genome-scale metabolic model for Agrobacterium tumefaciens.
    Xu N; Yang Q; Yang X; Wang M; Guo M
    Mol Plant Pathol; 2021 Mar; 22(3):348-360. PubMed ID: 33433944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.