These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 34655689)

  • 1. The perinuclear region concentrates disordered proteins with predicted phase separation distributed in a 3D network of cytoskeletal filaments and organelles.
    do Amaral MJ; de Andrade Rosa I; Andrade SA; Fang X; Andrade LR; Costa ML; Mermelstein C
    Biochim Biophys Acta Mol Cell Res; 2022 Jan; 1869(1):119161. PubMed ID: 34655689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsically Disordered Proteome of Human Membrane-Less Organelles.
    Darling AL; Liu Y; Oldfield CJ; Uversky VN
    Proteomics; 2018 Mar; 18(5-6):e1700193. PubMed ID: 29068531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleolar- and Nuclear-Stress-Induced Membrane-Less Organelles: A Proteome Analysis through the Prism of Liquid-Liquid Phase Separation.
    Mokin YI; Gavrilova AA; Fefilova AS; Kuznetsova IM; Turoverov KK; Uversky VN; Fonin AV
    Int J Mol Sci; 2023 Jul; 24(13):. PubMed ID: 37446185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compartmentalization and Functionality of Nuclear Disorder: Intrinsic Disorder and Protein-Protein Interactions in Intra-Nuclear Compartments.
    Meng F; Na I; Kurgan L; Uversky VN
    Int J Mol Sci; 2015 Dec; 17(1):. PubMed ID: 26712748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Post-Translational Modifications in the Phase Transitions of Intrinsically Disordered Proteins.
    Owen I; Shewmaker F
    Int J Mol Sci; 2019 Nov; 20(21):. PubMed ID: 31694155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Order wrapped in chaos: On the roles of intrinsically disordered proteins and RNAs in the arrangement of the mitochondrial enzymatic machines.
    Nesterov SV; Ilyinsky NS; Plokhikh KS; Manuylov VD; Chesnokov YM; Vasilov RG; Kuznetsova IM; Turoverov KK; Gordeliy VI; Fonin AV; Uversky VN
    Int J Biol Macromol; 2024 May; 267(Pt 1):131455. PubMed ID: 38588835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid-Liquid Phase Separation in Biology: Specific Stoichiometric Molecular Interactions vs Promiscuous Interactions Mediated by Disordered Sequences.
    Feng Z; Jia B; Zhang M
    Biochemistry; 2021 Aug; 60(31):2397-2406. PubMed ID: 34291921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TAR DNA-binding protein 43 (TDP-43) liquid-liquid phase separation is mediated by just a few aromatic residues.
    Li HR; Chiang WC; Chou PC; Wang WJ; Huang JR
    J Biol Chem; 2018 Apr; 293(16):6090-6098. PubMed ID: 29511089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling Molecular Interactions in Liquid-Liquid Phase Separation of Disordered Proteins by Atomistic Simulations.
    Paloni M; Bailly R; Ciandrini L; Barducci A
    J Phys Chem B; 2020 Oct; 124(41):9009-9016. PubMed ID: 32936641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription Regulators and Membraneless Organelles Challenges to Investigate Them.
    Sołtys K; Ożyhar A
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Making the Case for Disordered Proteins and Biomolecular Condensates in Bacteria.
    Cohan MC; Pappu RV
    Trends Biochem Sci; 2020 Aug; 45(8):668-680. PubMed ID: 32456986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications.
    Feng Z; Chen X; Wu X; Zhang M
    J Biol Chem; 2019 Oct; 294(40):14823-14835. PubMed ID: 31444270
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Bianchi G; Brocca S; Longhi S; Uversky VN
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomolecular condensates formed by designer minimalistic peptides.
    Baruch Leshem A; Sloan-Dennison S; Massarano T; Ben-David S; Graham D; Faulds K; Gottlieb HE; Chill JH; Lampel A
    Nat Commun; 2023 Jan; 14(1):421. PubMed ID: 36702825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and functionalization of membraneless compartments in Escherichia coli.
    Wei SP; Qian ZG; Hu CF; Pan F; Chen MT; Lee SY; Xia XX
    Nat Chem Biol; 2020 Oct; 16(10):1143-1148. PubMed ID: 32601486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase Separation of Intrinsically Disordered Proteins.
    Posey AE; Holehouse AS; Pappu RV
    Methods Enzymol; 2018; 611():1-30. PubMed ID: 30471685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates.
    Lin YH; Forman-Kay JD; Chan HS
    Biochemistry; 2018 May; 57(17):2499-2508. PubMed ID: 29509422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomolecular condensates in cell biology and virology: Phase-separated membraneless organelles (MLOs).
    Sehgal PB; Westley J; Lerea KM; DiSenso-Browne S; Etlinger JD
    Anal Biochem; 2020 May; 597():113691. PubMed ID: 32194074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phospho-regulation of intrinsically disordered proteins for actin assembly and endocytosis.
    Miao Y; Tipakornsaowapak T; Zheng L; Mu Y; Lewellyn E
    FEBS J; 2018 Aug; 285(15):2762-2784. PubMed ID: 29722136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composition-dependent thermodynamics of intracellular phase separation.
    Riback JA; Zhu L; Ferrolino MC; Tolbert M; Mitrea DM; Sanders DW; Wei MT; Kriwacki RW; Brangwynne CP
    Nature; 2020 May; 581(7807):209-214. PubMed ID: 32405004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.