These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 34655898)

  • 1. Feasibility evaluation of PET scan-time reduction for diagnosing amyloid-β levels in Alzheimer's disease patients using a deep-learning-based denoising algorithm.
    Peng Z; Ni M; Shan H; Lu Y; Li Y; Zhang Y; Pei X; Chen Z; Xie Q; Wang S; Xu XG
    Comput Biol Med; 2021 Nov; 138():104919. PubMed ID: 34655898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning generation of preclinical positron emission tomography (PET) images from low-count PET with task-based performance assessment.
    Dutta K; Laforest R; Luo J; Jha AK; Shoghi KI
    Med Phys; 2024 Jun; 51(6):4324-4339. PubMed ID: 38710222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of
    Ghafari A; Sheikhzadeh P; Seyyedi N; Abbasi M; Farzenefar S; Yousefirizi F; Ay MR; Rahmim A
    Phys Med Biol; 2022 Oct; 67(21):. PubMed ID: 36162408
    [No Abstract]   [Full Text] [Related]  

  • 4. Deep-learning prediction of amyloid deposition from early-phase amyloid positron emission tomography imaging.
    Komori S; Cross DJ; Mills M; Ouchi Y; Nishizawa S; Okada H; Norikane T; Thientunyakit T; Anzai Y; Minoshima S
    Ann Nucl Med; 2022 Oct; 36(10):913-921. PubMed ID: 35913591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An investigation of quantitative accuracy for deep learning based denoising in oncological PET.
    Lu W; Onofrey JA; Lu Y; Shi L; Ma T; Liu Y; Liu C
    Phys Med Biol; 2019 Aug; 64(16):165019. PubMed ID: 31307019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilizing deep learning techniques to improve image quality and noise reduction in preclinical low-dose PET images in the sinogram domain.
    Manoj Doss KK; Chen JC
    Med Phys; 2024 Jan; 51(1):209-223. PubMed ID: 37966121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial adaptive and transformer fusion network (STFNet) for low-count PET blind denoising with MRI.
    Zhang L; Xiao Z; Zhou C; Yuan J; He Q; Yang Y; Liu X; Liang D; Zheng H; Fan W; Zhang X; Hu Z
    Med Phys; 2022 Jan; 49(1):343-356. PubMed ID: 34796526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual high-count PET image generation using a deep learning method.
    Liu J; Ren S; Wang R; Mirian N; Tsai YJ; Kulon M; Pucar D; Chen MK; Liu C
    Med Phys; 2022 Sep; 49(9):5830-5840. PubMed ID: 35880541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parametric image generation with the uEXPLORER total-body PET/CT system through deep learning.
    Huang Z; Wu Y; Fu F; Meng N; Gu F; Wu Q; Zhou Y; Yang Y; Liu X; Zheng H; Liang D; Wang M; Hu Z
    Eur J Nucl Med Mol Imaging; 2022 Jul; 49(8):2482-2492. PubMed ID: 35312030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full-count PET recovery from low-count image using a dilated convolutional neural network.
    Spuhler K; Serrano-Sosa M; Cattell R; DeLorenzo C; Huang C
    Med Phys; 2020 Oct; 47(10):4928-4938. PubMed ID: 32687608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image reconstruction using UNET-transformer network for fast and low-dose PET scans.
    Kaviani S; Sanaat A; Mokri M; Cohalan C; Carrier JF
    Comput Med Imaging Graph; 2023 Dec; 110():102315. PubMed ID: 38006648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of Conventional
    Choi HJ; Seo M; Kim A; Park SH
    Medicina (Kaunas); 2023 Jul; 59(7):. PubMed ID: 37512092
    [No Abstract]   [Full Text] [Related]  

  • 13. Noise reduction with cross-tracer and cross-protocol deep transfer learning for low-dose PET.
    Liu H; Wu J; Lu W; Onofrey JA; Liu YH; Liu C
    Phys Med Biol; 2020 Sep; 65(18):185006. PubMed ID: 32924973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image Denoising of Low-Dose PET Mouse Scans with Deep Learning: Validation Study for Preclinical Imaging Applicability.
    Muller FM; Vervenne B; Maebe J; Blankemeyer E; Sellmyer MA; Zhou R; Karp JS; Vanhove C; Vandenberghe S
    Mol Imaging Biol; 2024 Feb; 26(1):101-113. PubMed ID: 37875748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A personalized deep learning denoising strategy for low-count PET images.
    Liu Q; Liu H; Mirian N; Ren S; Viswanath V; Karp J; Surti S; Liu C
    Phys Med Biol; 2022 Jul; 67(14):. PubMed ID: 35697017
    [No Abstract]   [Full Text] [Related]  

  • 16. Full-dose whole-body PET synthesis from low-dose PET using high-efficiency denoising diffusion probabilistic model: PET consistency model.
    Pan S; Abouei E; Peng J; Qian J; Wynne JF; Wang T; Chang CW; Roper J; Nye JA; Mao H; Yang X
    Med Phys; 2024 Aug; 51(8):5468-5478. PubMed ID: 38588512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noise2Void: unsupervised denoising of PET images.
    Song TA; Yang F; Dutta J
    Phys Med Biol; 2021 Nov; 66(21):. PubMed ID: 34663767
    [No Abstract]   [Full Text] [Related]  

  • 18. Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss.
    Ouyang J; Chen KT; Gong E; Pauly J; Zaharchuk G
    Med Phys; 2019 Aug; 46(8):3555-3564. PubMed ID: 31131901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning-based denoising of low-dose SPECT myocardial perfusion images: quantitative assessment and clinical performance.
    Aghakhan Olia N; Kamali-Asl A; Hariri Tabrizi S; Geramifar P; Sheikhzadeh P; Farzanefar S; Arabi H; Zaidi H
    Eur J Nucl Med Mol Imaging; 2022 Apr; 49(5):1508-1522. PubMed ID: 34778929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-quality PET image synthesis from ultra-low-dose PET/MRI using bi-task deep learning.
    Sun H; Jiang Y; Yuan J; Wang H; Liang D; Fan W; Hu Z; Zhang N
    Quant Imaging Med Surg; 2022 Dec; 12(12):5326-5342. PubMed ID: 36465830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.