These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 34655922)
1. Influence of temperature and relative humidity on the antifungal effect of 405 nm LEDs against Botrytis cinerea and Rhizopus stolonifer and their inactivation on strawberries and tomatoes. Ghate V; Yew I; Zhou W; Yuk HG Int J Food Microbiol; 2021 Dec; 359():109427. PubMed ID: 34655922 [TBL] [Abstract][Full Text] [Related]
2. Developing an LED preservation technology to minimize strawberry quality deterioration during distribution. Chong L; Ghate V; Zhou W; Yuk HG Food Chem; 2022 Jan; 366():130566. PubMed ID: 34303208 [TBL] [Abstract][Full Text] [Related]
3. Microbial interaction between Salmonella enterica and main postharvest fungal pathogens on strawberry fruit. Ortiz-Solà J; Valero A; Viñas I; Colás-Medà P; Abadias M Int J Food Microbiol; 2020 May; 320():108489. PubMed ID: 31954976 [TBL] [Abstract][Full Text] [Related]
4. Effect of combined Bacillomycin D and chitosan on growth of Rhizopus stolonifer and Botrytis cinerea and cherry tomato preservation. Lin F; Huang Z; Chen Y; Zhou L; Chen M; Sun J; Lu Z; Lu Y J Sci Food Agric; 2021 Jan; 101(1):229-239. PubMed ID: 32627181 [TBL] [Abstract][Full Text] [Related]
5. Thermal inactivation of Botrytis cinerea conidia in synthetic medium and strawberry puree. Villa-Rojas R; Sosa-Morales ME; López-Malo A; Tang J Int J Food Microbiol; 2012 Apr; 155(3):269-72. PubMed ID: 22445202 [TBL] [Abstract][Full Text] [Related]
6. Control of nectarine fruits postharvest fungal rots caused by Tahmasebi M; Golmohammadi A; Nematollahzadeh A; Davari M; Chamani E J Food Sci Technol; 2020 May; 57(5):1647-1655. PubMed ID: 32327775 [TBL] [Abstract][Full Text] [Related]
7. Antifungal effectiveness of potassium sorbate incorporated in edible coatings against spoilage molds of apples, cucumbers, and tomatoes during refrigerated storage. Mehyar GF; Al-Qadiri HM; Abu-Blan HA; Swanson BG J Food Sci; 2011 Apr; 76(3):M210-7. PubMed ID: 21535846 [TBL] [Abstract][Full Text] [Related]
8. Coatings comprising chitosan and Mentha piperita L. or Mentha × villosa Huds essential oils to prevent common postharvest mold infections and maintain the quality of cherry tomato fruit. Guerra ICD; de Oliveira PDL; de Souza Pontes AL; Lúcio ASSC; Tavares JF; Barbosa-Filho JM; Madruga MS; de Souza EL Int J Food Microbiol; 2015 Dec; 214():168-178. PubMed ID: 26313246 [TBL] [Abstract][Full Text] [Related]
10. Survival of spores of Rhizopus stolonifer, Aspergillus niger, Botrytis cinerea and Alternaria alternata after exposure to ethanol solutions at various temperatures. Mlikota Gabler F; Mansour MF; Smilanick JL; Mackey BE J Appl Microbiol; 2004; 96(6):1354-60. PubMed ID: 15139929 [TBL] [Abstract][Full Text] [Related]
11. Antifungal activities of fluoroindoles against the postharvest pathogen Botrytis cinerea: In vitro and in silico approaches. Raorane CJ; Raj V; Lee JH; Lee J Int J Food Microbiol; 2022 Feb; 362():109492. PubMed ID: 34861563 [TBL] [Abstract][Full Text] [Related]
12. Botrytis cinerea response to pulsed light: Cultivability, physiological state, ultrastructure and growth ability on strawberry fruit. Romero Bernal AR; Contigiani EV; González HHL; Alzamora SM; Gómez PL; Raffellini S Int J Food Microbiol; 2019 Nov; 309():108311. PubMed ID: 31499266 [TBL] [Abstract][Full Text] [Related]
13. Verifying the biocontrol activity of novel film-forming formulations of Candida sake CPA-1: resilience in relation to environmental factors, rainfall episodes, and control of Botrytis cinerea on different hosts. Carbó A; Teixidó N; Usall J; Torres R J Sci Food Agric; 2019 Aug; 99(11):4969-4976. PubMed ID: 30980409 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of biocontrol efficacy of Rhodotorula glutinis by salicyclic acid against gray mold spoilage of strawberries. Zhang H; Ma L; Jiang S; Lin H; Zhang X; Ge L; Xu Z Int J Food Microbiol; 2010 Jun; 141(1-2):122-5. PubMed ID: 20488570 [TBL] [Abstract][Full Text] [Related]
15. Antifungal activity of food additives in vitro and as ingredients of hydroxypropyl methylcellulose-lipid edible coatings against Botrytis cinerea and Alternaria alternata on cherry tomato fruit. Fagundes C; Pérez-Gago MB; Monteiro AR; Palou L Int J Food Microbiol; 2013 Sep; 166(3):391-8. PubMed ID: 24026010 [TBL] [Abstract][Full Text] [Related]
16. Efficiency of nanoemulsion of essential oils to control Botrytis cinerea on strawberry surface and prolong fruit shelf life. Javanmardi Z; Koushesh Saba M; Nourbakhsh H; Amini J Int J Food Microbiol; 2023 Jan; 384():109979. PubMed ID: 36260958 [TBL] [Abstract][Full Text] [Related]
17. Combinations of pulsed white light and UV-C or mild heat treatment to inactivate conidia of Botrytis cinerea and Monilia fructigena. Marquenie D; Geeraerd AH; Lammertyn J; Soontjens C; Van Impe JF; Michiels CW; Nicolaï BM Int J Food Microbiol; 2003 Aug; 85(1-2):185-96. PubMed ID: 12810282 [TBL] [Abstract][Full Text] [Related]
18. Photosensitization can be an effective risk-reduction strategy against the post-baking mold spoilage of bread. Chong L; Ghate V; Seah C; Zhou W Food Microbiol; 2024 Feb; 117():104390. PubMed ID: 37919002 [TBL] [Abstract][Full Text] [Related]
19. Growth Simulation and Discrimination of Botrytis cinerea, Rhizopus stolonifer and Colletotrichum acutatum Using Hyperspectral Reflectance Imaging. Sun Y; Gu X; Wang Z; Huang Y; Wei Y; Zhang M; Tu K; Pan L PLoS One; 2015; 10(12):e0143400. PubMed ID: 26642054 [TBL] [Abstract][Full Text] [Related]
20. Antifungal efficacy of chitosan extracted from shrimp shell on strawberry ( El-Araby A; Janati W; Ullah R; Uddin N; Bari A Heliyon; 2024 Apr; 10(7):e29286. PubMed ID: 38617969 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]